Как определить неисправность турбины дизельного двигателя

Содержание

Как проверить турбину на дизельном двигателе: домашняя диагностика

Турбированные двигатели стремительно завоевывают популярность. Если раньше турбонагнетатели устанавливались в тяжеловесные или мощные спортивные автомобили, то теперь турбины можно увидеть на легковых автомобилях, как с бензиновым движком, так и с дизельным.

Турбины дизельного двигателя обычно имеют срок эксплуатации намного меньший, чем у самого движка. Для того чтобы вовремя провести профилактические работы и не столкнуться с необходимостью оплачивать дорогостоящие детали, нужно периодически проверять работу турбины. Это вполне можно сделать самостоятельно, не обращаясь в автосервис.

Причины неисправности

Для того чтобы провести осмотр турбины и выявить неисправность, необходимо понимать, какие именно поломки могут произойти в системе турбонагнетателя.

Обычно самыми проблемными элементами являются сальники и подшипники. От износа этих деталей может появиться люфт, шум, можно столкнуться с клином турбины. Нарушиться работа может из-за неисправности смазочной системы, клапанов вентиляции, или поршневые кольца уже достаточно изношены. В таком случае продукты сгорания дизтоплива попадают в картер и приводят к негативным последствиям.

Если в выхлопе замечен дым, чаще всего сизый, то следует обратить внимание на PCV-клапан. Его неправильная работа повышает давление масла в турбине, из-за этого смазочный материал продавливает сальники. Попав наружу или в нагнетаемый воздух, масло меняет состав смеси, от этого движок значительно теряет мощность и начинает выделять вышеупомянутый дым.

Когда проверять турбину

Если использовать качественное масло и бережно относиться к дизельному агрегату, то турбонагннетатель будет работать исправно примерно 150 тысяч километров. Чтобы обнаружить любую поломку на ее начальной стадии, нужно внимательно следить за турбиной, достаточно проверить работу агрегата во время замены масла.

Таким образом, автовладелец может значительно сэкономить, ремонтируя неисправность на ее начальной стадии, вместо замены дорогостоящей детали.

Первые признаки неисправности

Разумеется, если у автолюбителя нет опыта в работе с автомобилями, не стоит сразу же разбирать агрегат и пытаться выявить неисправность изнутри. Существует несколько признаков, которые свидетельствуют о неправильной работе турбокомпрессора:

  • появление сизого или черного дыма во время выхлопа;
  • очень громкая работа дизельного агрегата при различных нагрузках;
  • двигатель часто перегревается;
  • расход топлива неуклонно растет, как и скорость расхода масла;
  • ухудшение тяги, потеря мощности и динамики.

Каждый из признаков может говорить не только о неисправной турбине, но и о ряде других мелких поломок. Если причина не в турбонагнетателе, то необходимо немедленно обратиться на сервис для дальнейшей диагностики. Чем раньше обнаружить поломку, тем дешевле обойдется ее устранить.

Самостоятельная проверка

Первичную проверку можно провести собственными силами, чтобы не тратиться на компьютерную диагностику, которая часто стоит немалых денег. Для начала, турбокомпрессор нужно тщательно осмотреть.

В первую очередь проверяется уровень и качество моторного масла используемого для дизельного мотора. Затем нужно убедиться, что в компрессор не попал никакой посторонний предмет.

После проведенных процедур необходимо оценить цвет выхлопа. Он также может указать на конкретные проблемы с турбиной. Если цвет выхлопа черный, и при этом замечено падение мощности, то, скорее всего, придется иметь дело с переобогащенносй смесью. Она появляется из-за поломки системы впуска-выпуска воздуха. На впуске в цилиндры попадает недостаточное количество воздуха, а на выпуске могут быть утечки, которые и приводят к потере мощности.

Сизый или даже белый дым из выхлопной трубы говорит о том, что масло попадает в цилиндры, а затем сгорает в рабочей камере. При этом расход масла может вырасти примерно до литра на 1000 километров. Необходимо проверить работу ротора и чистоту фильтров. Ротор должен иметь небольшой люфт и не касаться корпуса, иначе деталь требует немедленного осмотра и ремонта.

Сильно загрязненный фильтр не может пропускать необходимое количество воздуха, за счет этого создается разное давление в корпусе турбонагнетателя и в картридже с подшипниками. Из этого картриджа масло попадает в компрессор. Если дело не в фильтре, то необходимо проверить всю систему подачи масла, шланги и патрубки на наличие загибов, трещин и щелей.

Герметичность соединений патрубков можно проверить при заведенном двигателе. Свист и скрип, а также воздух, прорывающийся сквозь систему, говорит о том, что хомуты нужно подтянуть. Любая неплотность или повреждение ведет к недостаточной подаче воздуха в цилиндры.

Еще одной причиной неисправности турбины становится неправильный слив масла из-за того, что газы попали в картер. Необходимо проверить систему вентиляции, чтобы дизельный мотор не начал сапунить.

Проверка на заведенном двигателе

Самый простой способ, как проверить турбину на дизельном двигателе требует присутствия хотя бы двух человек.

  1. Заведите двигатель.
  2. Найдите патрубок между турбонагнетателем и впускным коллектором.
  3. Передавите его.
  4. Несколько секунд погазуйте.

При правильной работе турбины, почувствуется, что патрубок ощутимо надувается. Если этого не происходит, возможны разнообразные трещины и дефекты коллектора. Следует обратиться за квалифицированной помощью для устранения поломки.

Очень важно понимать, что диагностику можно провести самостоятельно, но ремонт необходимо доверить профессионалам.

Неквалифицированное вмешательство может привести к тому, что маленькая неисправность приведет к поломке всей детали и поставит автовладельца перед необходимостью менять и ремонтировать турбокомпрессор. Необходимо обратиться в проверенный сервис, где специалисты быстро и качественно устранят неисправность и продлят жизнь турбонагнетателю на дизельном двигателе.

Неисправности автомобильной турбины. Как устранить неполадки?

Автомобильный турбокомпрессор, несмотря на обещанную производителем долговечность (10 лет) и износостойкость, всё-таки дает сбой, барахлит и ломается. Поэтому приходится время от времени устранять неисправности турбины как дизельного так и бензинового двигателя. А чтобы вовремя выявить признаки неисправности нужно всегда обращать внимание на нестандартное поведение автомобиля.

Турбина вышла из строя, если:

  • есть ощущение, что пропала тяга (снизилась мощность);
  • при разгоне авто из выхлопной трубы валит дым синего, черного, белого цвета;
  • при работающем двигателе слышны свист, шум, скрежет;
  • резко увеличился расход или есть утечка масла;
  • часто падает давление воздуха и масла.

Если появляются такие симптомы, то в этих случаях нужна тщательная проверка турбины на дизеле.

Признаки и неисправности турбокомпрессора

  1. Синий выхлопной дым – признак сгорания масла в цилиндрах мотора, попавшего туда из турбокомпрессора или же двигателя. Чёрный — значит, есть утечка воздуха, а выхлопной газ белого цвета указывает на засорение сливного маслоотвода турбонагнетателя.
  2. Причиной свиста является утечка воздуха на стыке выхода компрессора и мотора, а скрежет указывает на трущиеся элементы всей системы турбонаддува.
  3. Стоит также проверить все элементы турбины на двигателе, если она отключается или вовсе перестала работать.

90% проблем автомобильной турбины связаны с маслом.

В основе всех неисправностей турбокомпрессора – три причины

Нехватка и слабое давление масла

Возникает из-за протечки или пережима масляных шлангов, а также вследствие их неправильной установки к турбине. Приводит к повышенному износу колец, шейки вала, недостаточной смазке и перегреву радиальных подшипников турбины. Их придется менять.

5 секунд работы турбины дизельного двигателя без масла могут нанести непоправимый вред всему агрегату.

Загрязнение масла

Случается из-за несвоевременной замены старого масла или фильтра, попадания воды или топлива в смазку, использования некачественного масла. Приводит к износу подшипника, закупорке маслоподводных каналов, повреждению оси. Неисправные детали стоит заменить новыми. Густое масло тоже вредит подшипникам, так как дает осадок и снижает герметичность турбины.

Попадание постороннего предмета внутрь турбокомпрессора

Приводит к повреждению лопаток компрессорного колеса (следовательно, падает давление воздуха); лопаток турбинного колеса; ротора. Со стороны компрессора нужно заменить фильтр и проверить впускной тракт на герметичность. Со стороны турбины стоит заменить вал и проверить впускной коллектор.

Устройство турбины двигателя автомобиля: 1. компрессорное колесо; 2. подшипник; 3. актуатор; 4. штуцер подачи масла; 5. ротор; 6. картридж; 7. горячая улитка; 8. холодная улитка.

Можно ли ремонтировать турбину самостоятельно?

Устройство турбокомпрессора кажется простым и понятным. И все, что нужно для ремонта турбины, – это знать модель турбины, номер двигателя, а также изготовителя и иметь под рукой запасные части или заводской ремкомплект для турбин.

Самостоятельно можно провести визуальную диагностику турбокомпрессора, демонтировать его, разобрать и заменить дефектные элементы турбины, установить на место. Осмотреть воздушную, топливную, охлаждающую и масляную системы, с которыми тесно взаимодействует турбина, проверить их работу.

Профилактика поломок турбины

Чтобы продлить срок работоспособности турбонагнетателя, следуйте простым правилам:

  1. Своевременно меняйте воздушные фильтры.
  2. Заливайте оригинальное масло и качественное топливо.
  3. Полностью меняйте масло в системе турбонаддува после каждых 7 тыс.км пробега.
  4. Следите за величиной давления наддува.
  5. Обязательно прогревайте автомобиль с дизельным двигателем и турбокомпрессором.
  6. После длительной поездки дайте горячему двигателю остыть – поработать на холостых оборотах минимум 3 минуты, прежде чем выключать его. Не будет углеродного осадка, который вредит подшипникам.
  7. Регулярно проводите диагностику и позаботьтесь о профессиональном обслуживании.

whatever ›
Блог ›
Немного о наддуве простым языком

Отвечал на вопрос о «чарджерах» и случайно накатал целую статью! Тем кому интересен наддув, но знаний о нём неочень много, есть что почитать)
_________________________________________

Есть 3 вида приспособлений для наддува, которые сегодня в ходу (вариантов наддуть воздух крайне много: тот же роторный двигатель изначально был компрессором): турбокомпрессор, винтовой нагнетатель и винтовой компрессор. Не смотря на то, что со словами компрессор и нагнетатель обращаются как попало, они имеют разные значения: нагнетатель — нагнетает воздух, а компрессор — нагнетает и сжимает его!)
(вот к примеру, нет турбонагнетателя — только турбокомпрессор)

Так вот) Турбины (турбокомпрессоры — ТК) принципиально все одинаковые, однако, есть различия в приводе: от выхлопных газов и от коленвала.


Турбокомпрессор с приводом от выхлопных газов приводится в движение газовой турбиной, которая собственно и раскручивается от потока отработавших газов, а она в свою очередь приводит в движение крыльчатку ТК. Турбины от выхлопа не расходуют КПД двигателя, а наоборот повышают его, делая мощность из «отходов». Они могут создавать очень большое давление наддува — свыше 4 бар.

Турбокомпрессор с приводом от коленвала практически идентичен тому, что работает от газовой турбины, но его скорость вращение ниже раза в 4 — 50 000 об/мин против 200 000 об/мин у ТК от выхлопных газов.


Сам ТК от коленвала приводится в движение через передачу (обычно 1 к 5) и, собственно, шкивы и ремень. Привод от коленвала его главный плюс, потому что нет провал и прибавка идёт во всех оборотах, а также он компактный и может тоже выдавать высокое давление — свыше 2х бар. Но он расходует мощность двигателя, которая застрачивается на его раскручивания, хотя и прибавляет гораздо больше.

Ну а винтовые представители, как Вы уже знаете, делятся на 2 группы: нагнетатель (типа Roots) и компрессор (типа Lysholm). Все они состоят из 2х винтовых роторов и приводятся только от коленвала.


Нагнетатель типа Roots просто нагнетает воздух, не сжимая его. Он относительно прост в изготовлении, максимальное давление наддува составляет порядка 1 бара. Расходует около 5% л.с. на свой привод.
Компрессор типа Lysholm уже сжимает воздух, засчёт более сложной формы винтов. Вообще, швед Альфред Лизхольм в начале 20ого века просто «прокачал» компрессор Рутса, потому они так похожи. В отличии от Roots, Lysholm — более надёжная система, которая может выдавать бОльшую мощность, всего лишь путём замены шкивов (передачи), которая его приводит. Выдать он может огромное давление — как на машинах Top Fuel — до 5 бар.


В Top Fuel за свою услугу он забирает 400 л.с., зато возвращает 8000 л.с. (да, тут 3 нуля) с 8 литрового V8.

Вот так обстоят дела) ) )

Признаки неисправности турбины

Как и все остальные агрегаты транспортного средства, турбина не может избежать периодических поломок, которые в результате требуют незамедлительного ремонтного вмешательства. Некоторые из них могут быть совсем незначительными, но другие несут серьезную угрозу, отрицательно сказываясь на работе отдельных устройств автомобиля. В данной статье мы расскажем об основных признаках и причинах таких неполадок, а также выясним, можно ли справиться с ними собственными силами.

1. Признаки неисправностей турбины и их причины

Существует несколько распространенных признаков того, что турбине Вашего автомобиля приходится несладко.

Первый и самый характерный признак имеющихся проблем выражается в выбросе из выхлопной трубы дыма синего цвета (особенно он заметен при сильном разгоне машины, однако, когда двигатель стабильно работает на постоянных оборотах – дым исчезает). Причиной данного явления есть сгорание масла, которое случайно попало в цилиндры мотора вследствие его утечки из турбокомпрессора.

Кроме того, из выхлопной трубы также могут появляться и черные выхлопные газы, свидетельствующие о сгорании обогащенной смеси вследствие утечки воздуха либо в нагнетающих магистралях, либо в интеркулере. Еще одной причиной, влияющей на образование черного выхлопа, есть неисправная система управления турбокомпрессора или какой-то его дефект.

Третьим признаком проблем данного узла выступает белый дым, появляющийся из той же выхлопной трубы. Причину его образования чаще всего стоит искать в засорении сливного маслопровода турбины. Увеличенное потребление масла и следы его подтекания, обнаруженные на турбине и на патрубках воздушного тракта – четвертый признак неисправности турбокомпрессора, который вызван засорением канала подачи воздуха, закоксованием корпуса оси турбины или же засорением сливного маслопровода.

В некоторых ситуациях водитель может заметить, что динамика разгона машины значительно ухудшилась. В этом случае также не лишним будет вспомнить о турбокомпрессоре, ведь любое его повреждение или поломка в системе управления работой данного агрегата ограничивают поступление воздуха в автомобильный двигатель, что и вызывает снижение его возможностей.

Следующий признак, указывающий на неполадки в функционировании турбины – это появление шума при работе мотора, а причина здесь кроется в утечке воздуха между двигателем и выходом компрессора. Помимо шума (или вместо него) можно услышать и скрежет, сопровождающий работу турбокомпрессора. Определить его источник Вам поможет визуальная диагностика корпуса агрегата, так как именно его трещины, различные деформации, а также касание лопастей о края трещин сигнализируют о необходимости скорой замены турбокомпрессора.

Если Вы заметили, что Ваш верный друг начал много «кушать», а токсичность выхлопа почему-то резко увеличилась – это значит, что пора взглянуть на воздушный фильтр и/или на канал подачи воздуха к турбине, ведь засорение этих деталей прямо влияет на появление указанной проблемы.

И наконец, последним из наиболее распространенных признаков неисправности компрессора является утечка масла со стороны компрессора. Причина этого не отличается оригинальностью и основывается на том же закоксовании корпуса оси турбокомпрессора, его повреждении или нарушении исправной работы смазочной системы.

2. Влияние неисправной турбины на работу автомобильного двигателя

Кому-то может показаться, что небольшая турбина не может серьезно повлиять на рабочее состояние автомобильного двигателя, но это далеко не так.

Довольно часто причина неисправности турбины кроется в низком давлении масла или в его плохом качестве. Понижение давления зачастую есть результатом сильно загрязненного или низкокачественного масляного фильтра, либо же следствием применения промывки «пятиминутки».

Учитывая большие обороты турбины и постоянные высокие температуры (а именно такими и есть ее рабочие условия), даже кратковременное падение давления может привести к поломке подшипника оси турбины. Его сильный износ вызывает увеличение радиального зазора, а люфт оси, в свою очередь, способствует разрушению сальников.

Сломанные сальники уже не могут обеспечить герметичность, поэтому масло начинает свободно просачиваться в коллектор мотора. В это время давление масла в подшипнике оси турбин существенно снижается, что вызывает еще большее разрушение как самого элемента, так и сальников.

Выхлопные газы, проходя через разрушенные детали, попадают внутрь подшипника, где настолько повышают температуру, что масло буквально воспламеняется, теряя все свои смазывающие свойства. Это приводит к окончательной «гибели» подшипника, а вместе с ним ломаются и лопасти турбин, оставляя свои обломки внутри агрегата.

Смазывание элементов турбокомпрессора напрямую зависит от маслонасоса мотора, поэтому даже несколько минут работы турбины в подобном режиме оставят силовой агрегат без смазочного материала. А что происходит с работающим двигателем без масла, думаю, объяснять не надо.

Чтобы подобное не приключилось и с Вашим автомобилем, всегда помните об основных признаках неисправности турбокомпрессора: падении мощности силового агрегата, запахе перегретого моторного масла, каплях или подтеках масла на выхлопной трубе, падении его уровня, а также об облаках неестественного выхлопа, вырывающихся из выхлопной трубы автомобиля.

Также, неисправная турбина будет отмечаться неравномерной работой мотора на холостом ходу и замасленными свечами. Если вовремя не обратить внимание на эти признаки, то следующим показателем станет характерный скрежет лопастей, трущихся о внутреннюю поверхность турбинного корпуса, что чревато более серьезными проблемами. В любом случае, при появлении малейших проблем лучше всего сразу обратиться за помощью к специалистам ближайшего сервисного центра.

3. Можно ли отремонтировать турбину своими руками?

Любые ремонтные работы предусматривают проведение предварительной диагностики вышедшего из строя элемента. Так же и с турбиной, прежде чем браться за ремонт, нужно знать, с чем конкретно Вам приходится иметь дело. В условиях специализированной мастерской все начинается с визуального осмотра и заканчивается проверкой турбины на стенде. Надо сказать, что в случае с турбокомпрессором диагностику проводят не только на начальном этапе, но и как завершение проделанной работы.

После того как будут установлены все проблемные места и вышедшие из строя элементы, специалисты переходят к устранению обнаруженных неисправностей. В условиях гаражного ремонта владельцы автомобилей часто обходятся подручными инструментами или дешевыми аналогами профессионального оборудования, а это не самым лучшим образом может сказаться не некоторых деталях.

Еще одним моментом, на который стоит обратить свое внимание, есть то, что при разрушении подшипников скольжения вполне реально обнаружить и повреждение крыльчатки ротора. Данный элемент изготавливается из специального сплава и в случае поломки не подлежит ремонту, а значит, единственным возможным решением будет замена крыльчатки. Если же Вы решите как-то отремонтировать деталь, то имейте ввиду, что даже самые небольшие изменения в геометрии крыльчатки могут полностью нарушить технические параметры турбокомпрессора.

В ходе проведения диагностического этапа есть возможность определить и критический процент износа остальных элементов устройства, то есть тех, которые хоть еще и функционируют, но находятся на грани своих возможностей. Одним словом, не стоит недооценивать важность грамотной предварительной диагностики и лучше доверить ее знающим людям.

Что касается проведения ремонтных работ, то выполнение поставленной задачи возможно лишь после полной дефектовки деталей. Однако прежде чем переходить к указанной процедуре, нужно уметь еще грамотно разобрать турбину, ведь при отсутствии соответствующего опыта существует высокая вероятность дополнительного повреждения деталей агрегата, что еще больше усложнит дальнейшую работу.

После того, как все детали раскручены, сняты и ровненько лежат в сторонке, можно переходить к полной очистке комплекта. Опять-таки, в условиях сервиса для этой процедуры имеется все самое необходимое оборудование, при помощи которого одни детали пескоструят, а другие лишь помещают в ультразвуковую ванну. Только так компрессор сможет вновь обрести прежний вид, что позволит более конкретно определить поврежденные зоны.

Следующий этап – это дефектовка, которая предусматривает осмотр сломанной детали и проведение замеров узлов с высокой степенью износа.

Профессиональный ремонт турбокомпрессора включает в себя замену упорного подшипника, компрессионных и уплотнительных колец, а также подшипника скольжения и втулки газодинамических колец. Все эти детали меняются в обязательном порядке и входят в так называемый «ремкомплект».

После того как все дефектные детали удалены, а на их место установлены новые, выполняется балансировка. В первую очередь следует выполнить балансировку турбинного вала, затем компрессорного кольца, а за ними и всего вала в сборе. Любой имеющийся дисбаланс должен быть полностью удален. Данный этап считается самым важным во всей процедуре ремонта, так как даже небольшой дисбаланс турбокомпрессора при высоких оборотах мотора может за несколько секунд вызвать неполадки в работе устройства.

Следующий, предпоследний этап нашего ремонта заключается в обратной сборке всех деталей и помещении их в общий корпус, после чего выполняется балансировка картриджа и обратная его установка в «улитки».

Весь процесс ремонтных работ завершается монтажом перепускного клапана на его законное место и общей регулировкой всего устройства.

Если Вы полностью уверены в том, что сможете выполнить все вышеописанные действия в домашних условиях, тогда дерзайте, однако мы бы не советовали этого делать. Наверное, это один из тех случаев, когда не стоит экономить и лучше обратиться за помощью к специалистам.

4. Профилактика неисправностей турбокомпрессора или как не «убить» турбину

На работоспособность автомобильного турбокомпрессора влияет целый ряд факторов, но сейчас мы рассмотрим лишь наиболее распространенные из них.

Масло. Как оказывается, это самый доступный и надежный способ «угробить» турбокомпрессор, конечно, при условии, что оно плохое. Плохим называют тот продукт, который утратил высокие диспергирующе-стабилизирующие и солюбилизирующие свойства. Говоря обычным языком – это может быть масло, которое уже отслужило свое, было не предназначено для данного типа двигателя или имело механические включения (серные или углеродные отложения и прочие элементы, разрушающие детали механизма). Также, самым отрицательным образом может сказаться использование масла, в котором имеются присадки, не подходящие для работы в двигателе с турбонадувом.

Присадки, изначально предназначенные для восстановления уплотнений или поднятия уровня компрессии, способны уничтожить турбину за несколько часов. Так, если добавка для поднятия компрессии попадет между валом и подшипником и начнет активно уменьшать зазор, то это будет происходить до тех пор, пока подшипник не припаяется к валу. Если Вам попалась хорошая присадка, то много времени такое действие не займет. Правда, справедливости ради надо сказать, что применение «плохих» присадок встречается немного реже, нежели использование масла с механическими примесями.

Механические примеси — это нагар со стенок двигателя, который попал в масло. Он состоит из смолистых отложений, частиц металла, появляющихся при износе деталей двигателя и грязи, попадающей в масляную систему в результате неграмотно выполненных ремонтных работ на моторе автомобиля.

В общем, если Вы не хотите проблем с турбокомпрессором, то необходимо четко соблюдать график смены масла и масляного фильтра, использовать только самые высококачественные и проверенные масла и присадки для конкретного типа двигателя. Кроме того, устанавливая турбину, следует применять специальные герметики, а проводя ремонтные работы на моторе – соблюдать меры предосторожности, ограждающие масло и масляные каналы от попадания грязи. Помимо этого, периодически нужно проверять проходимость магистрали подачи масла к турбине, чтобы в случае засорения можно было бы вовремя ликвидировать проблему.

Масляный насос – еще один фактор, который влияет на работоспособность турбины. Если указанный элемент не сможет обеспечить необходимое давление, то это приведет к непостоянному протоку масла между валом и подшипниками, а ведь именно он создает надежную масляную пленку, которая снижает трение. Кроме того, хороший ток смазочной жидкости влияет и на охлаждение составляющих элементов турбины. Да-да, масло, обладающее температурой в 85оС, является охладителем! Возможно, в это сложно поверить, но с учетом того, что температура выхлопных газов может достигать 750оС, такое вполне вероятно. В большинстве случаев, турбины изготавливаются из металла, а он хороший проводник тепла.

Несмотря на то, что в конструкции турбокомпрессора уже предусмотрены элементы, призванные защищать корпус подшипников (вместе со всей его начинкой) от влияния высоких температур, на практике их оказывается недостаточно. Поэтому поток масла с температурой ниже самого колеса турбины или его корпуса просто незаменим для поддержания оптимальных условий работы агрегата.

Проще говоря, если Вы хотите, чтобы турбина служила верой и правдой еще очень долгое время, то сделайте все, чтобы не допустить снижения уровня масла до показателя, при котором ротор не сможет работать на «масляном клину», что, соответственно, не позволит обеспечить надежное охлаждение вала ротора и подшипников.

Выхлопная система транспортного средства также способна вывести турбину из строя. Дело в том, что в случае повышения давления выхлопных газов в корпусе турбокомпрессора («улитке»), они будут не только раскручивать вал, но и попытаются затолкать его внутрь корпуса агрегата. Весь этот напор придется принять упорному подшипнику, который будет стараться удержать вал в том положении, которое предусмотрено разработчиками и изготовителями турбокомпрессора. Однако его возможности далеко не безграничны, и со временем деталь настолько изнашивается, что дальнейшая работа турбины уже невозможна.

Если не вдаваться в подробности, то процесс выхода агрегата из строя проходит в следующей последовательности: сначала изнашивается внутренняя поверхность упорного подшипника, затем происходит разбалансировка ротора, после чего приходят в негодность подшипники скольжения. На следующем этапе (если вовремя не вмешаться) люфт, увеличившийся в 20 раз, приведет к задеванию корпуса крыльчаткой. Как результат – либо обрыв вала, либо облом лопастей крыльчатки.

Кроме того, слишком высокое давление выхлопных газов отрицательно сказывается на уплотнительных кольцах, преграждающих им путь во внутрь среднего корпуса устройства. Чтобы избежать столь печальных последствий, не рекомендуется ставить на автомобиль нештатный глушитель, обладающий меньшим проходным сечением, заменять прогоревший участок трубой меньшего диаметра или допускать сильное закоксование катализатора (на тех моделях, где он есть).

Топливная аппаратура, а точнее, неправильная ее регулировка, также нередко вызывает сбои в работе турбокомпрессора. В данном случае, главной причиной этого будет превышение допустимой нормы температуры выхлопных газов в корпусе турбины, вследствие чего втулка, расположенная ближе к колесу турбины, просто заклинит, что нередко вызывает обрыв колеса турбинного вала. Кроме того, может произойти разрушение лопастей турбинного колеса (стальной крыльчатки), а это ведет к нарушению заводской балансировки.

Нарушение балансировки колеса турбины или колеса компрессора – довольно действенная причина поломки турбины. Заводские параметры балансировки являются ключевым моментом в обеспечении длительного срока службы турбокомпрессора, конечно, при условии правильной эксплуатации. Если не нарушать балансировку, то износ комплектующих деталей будет минимален, но опять же, это только при условии своевременной замены масла и фильтров, правильной регулировки топливной системы и отсутствия проблем в системе выхлопа.

В некоторых случаях, нарушение балансировки может быть вызвано попаданием в агрегат посторонних предметов. Если говорить о колесе компрессора, то такими элементами чаще всего есть части разрушенного воздушного фильтра, различный мусор, который попал в патрубок подачи воздуха к турбине в ходе замены воздушного фильтра, а также отслоившаяся резина патрубков. Нередко можно встретить и абразивный износ лопастей компрессорного колеса. Это тот случай, когда отдельный участок патрубков, идущих от воздушного фильтра к корпусу компрессора, негерметичен, из-за чего происходит подсос пыльного атмосферного воздуха.

Что касается нарушения балансировки турбинного колеса, то существенную роль в этом процессе играют разрушающиеся элементы головки или поршней. Специалисты отмечают, что нередко при разборке турбины приходится извлекать из нее части направляющих клапанов или их напыление, которое для турбин легковых автомобилей просто губительно.

Разрушенные седла клапанов или осколки от их тарелок, попадающие на лопасти крыльчатки, также вызывают разбалансировку агрегата. Иногда во впускном коллекторе можно найти даже гайки или болты, которые попали туда в результате демонтажа турбины. Подводя итог всего вышесказанного, нужно отметить, что если Вы хотите продлить «жизнь» турбокомпрессора, следует соблюдать некоторые правила:

1) Используйте только оригинальное масло и качественное топливо;

2) Производите своевременную замену воздушных фильтров;

3) Следите за давлением надува;

4) Спустя каждых 7 000 километров пробега полностью меняйте масло;

5) Автомобиль, оборудованный дизельным двигателем, необходимо обязательно прогревать;

6) После длительного путешествия, прежде чем выключить мотор, нужно дать ему остыть (поработать на холостых оборотах минимум 3 минуты). Это позволит избежать образования углеродного осадка, который отрицательно сказывается на работе подшипников;

7) Также не забывайте о регулярности проведения диагностики и профессионального обслуживания.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Неисправности турбокомпрессора:

Мощность дизельного двигателя ограничена максимальным числом оборотов, равным приблизительно 5000 об/мин. Ее можно поднять, только увеличив рабочий объем двигателя или степень сжатия.

По соображениями ограничения массы и размеров автомобиля его оснащают как можно меньшим двигателем, который будет работать с максимальными оборотами, чтобы обеспечить требуемую мощность.

Дизельный двигатель работает в широком диапазоне числе оборотов. Соответствие мощности турбины и нерегулируемого компрессора турбокомпрессора означает соответствие создаваемого последним давления энергии отработавших газов. Увеличивая мощность двигателя (например, нажимая на педаль акселератора), мы увеличиваем как количество отработавших газов, так и давление наддува. Недостатком этой конструкции будет создание слишком высокого давления на максимальных оборотах. Повреждения двигателя избегают, ограничивая давление.

Принцип работы регулятора давления представлен на рис. 81. Давление наддува в компрессоре воздействует на мембрану, которая прижимается пружиной. Когда сила сжатой пружины преодолевается, открывается регулировочный клапан, уменьшая поток отработавших газов через турбину и удерживая таким образом давление наддува ниже определенного предела, при повышении которого двигатель был бы поврежден.

В турбокомпрессорах для дизельных двигателей этот клапан почти всегда встроен в корпус турбины. Этим достигается компактность конструкции и точность работы.

На рис. 83. представлен в разрезе регулировочный клапан фирмы Garrett.

Верхняя часть стержня клапана полая. Эта полость заканчивается на середине стержня боковым отверстием.

Обычно давление во впускном трубопроводе над мембраной выше давления в корпусе. Вот почему более холодный воздух из компрессора циркулирует по полости в стержне к точке крепления стержня в корпусе турбины и затем по вентиляционному воздуховоду к корпусу турбины.

Крышка мембраны зажата на корпусе клапана таким образом, что на практике никакая регулировка усилия пружины невозможна. Если предохранительный клапан не работает как надо, корпус турбины вместе с клапаном должен быть заменен полностью.

На рисунке 84 представлены разрез и схема работы предохранительного клапана фирмы ККК.

Этот клапан также может быть встроен в выхлопную трубу, как отдельно от корпуса турбины, так и в ней.

Чтобы максимально уменьшить передачу тепла, встраивают множество теплоизоляционных элементов. Кроме этого, корпус клапана имеет ребра охлаждения, которые поглощают тепло и рассеивают его в окружающий воздух.

Давление наддува можно также регулировать со стороны компрессора. При определенном давлении регулировочный клапан открывается и выпускает часть воздуха в атмосферу или во впускной трубопровод перед компрессором. Эта система, правда, имеет два недостатка. Во-первых, выпускаемый воздух имеет повышенную температуру, поэтому термодинамические преимущества турбокомпрессора уменьшаются. Во-вторых, если давление регулируется только компрессором, требуется слишком большая турбина, чтобы в любой момент времени обеспечить нужную производительность компрессора. Это вызывает увеличение времени реакции на нажатие педали акселератора, поскольку турбокомпрессор срабатывает с запаздыванием.

На практике клапан у компрессора используется как дополнительная защита от повышения давления совместно с регулятором давления наддува.

Корпус оси

С уменьшением размеров турбины и компрессора общая величина современных турбокомпрессоров также уменьшается. При этом турбина располагается все ближе к компрессору.

Передача тепла от турбины к компрессору по оси и корпусу оси неблагоприятно сказывается на надежности и долговечности корпуса, а также ухудшает теплоотдачу турбокомпрессора: воздух должен быть как можно более холодным, поскольку холодный (более плотный) воздух содержит больше кислорода, чем горячий.

В ходе развития турбокомпрессоров для автомобильных дизельных двигателей конструкторы постоянно искали новые возможности воспрепятствования передаче тепла. При изготовлении корпуса оси стали встраивать большее количество термокомпенсационных элементов, увеличили количество содержащегося в корпусе масла (см. рис. 85).

Так, фирма Garrett изготовила «морщинистый» корпус оси, разработанный специально для автомобильных двигателей. Этот корпус устанавливается на турбокомпрессоре Т3 той же фирмы. Благодаря особой форме корпуса достигнуто снижение температуры на его внутренней поверхности, при этом пиковые температуры снижены:

  1. усилением вентиляции вокруг основания турбины, что значительно улучшает циркуляцию масла и отвод тепла;
  2. увеличением размеров металлических деталей, чтобы ускорить поглощение тепла;
  3. использованием охлаждающих ребер для улучшения отвода тепла от основания турбины.

Такой корпус показан на рис. 86.

На рисунке 87 представлены графики, показывающие достигнутое снижение максимальной температуры осевого основания турбины. Максимальная температура достигается через несколько минут после остановки двигателя.

Турбокомпрессоры для бензиновых двигателей

Принцип работы турбокомпрессоров для бензиновых автомобильных двигателей такой же, что и для дизелей общего применения. Поэтому данная глава должна рассматриваться как продолжение предыдущих описаний турбокомпрессоров для дизелей общего применения и автомобильных двигателей.

В случае установки турбокомпрессора на бензиновый двигатель возникают специфические требования.

Обеспечение герметичности маслогазовых каналов турбокомпрессора

Предотвращение утечек масла со стороны компрессора в случае с бензиновым двигателем иногда намного сложнее, чем в случае с дизелем, особенно если дроссельная заслонка установлена перед турбокомпрессором. В этом случае в компрессоре образуется сильное разрежение, из-за чего масло засасывается в корпус. Фирма Garret разработала уплотнительное кольцо из карбона, которое применяется на автомобильных турбокомпрессорах Т2, Т25 и Т3. Карбоновое уплотнительное кольцо прижимается к обратной стороне крыльчатки компрессора и обеспечивает герметизацию. Правда, часть механической энергии турбокомпрессора при этом теряется. Такая конструкция используется только в том случае, если это действительно необходимо.

Высокая герметичность, обеспечиваемая кольцом со стороны компрессора, необходима также, если перед входом турбокомпрессора образуется топливно-воздушная смесь. В этом случае герметичность должна предотвратить попадание смеси через корпус оси в картер двигателя, что могло бы вызвать пожар или повреждение последнего.

В тех случаях, когда высокая герметичность не требуется, используют ту же систему уплотнений, что и в компрессоре для дизельного двигателя.

В сравнении с дизельным двигателем, температура отработавших газов бензинового двигателя более высокая, поэтому необходимы дополнительные меры по теплоизоляции.

Качество материалов турбины

Корпус турбины, так же как и ее ротор, изготавливается из материалов повышенного качества, отличающихся высокой термостойкостью.

Некоторые типы роторов турбин для турбокомпрессоров бензиновых двигателей по своей форме и технологии изготовления идентичны предназначенным для небольших дизельных двигателей. Чтобы избежать возможных ошибок при идентификации, фирма Garrett ввела отличительный признак: специальную форму торца ротора (см. рис. 88 и 89).

Регулировочный клапан

При разработке регулировочного клапана также учитывается повышенная температура в турбине.

При установке клапана непосредственно на корпус турбины передача тепла от клапана к мембране исполнительного механизма настолько велика, что мембрана повреждается.

Существуют два решения проблемы. Во-первых, можно отодвинуть клапан от турбины. Это решение использует фирма ККК, потому что оно вдобавок позволяет сделать регулировку более точной. Но это также и наиболее дорогой вариант, из-за чего его можно использовать только на автомобилях высшего класса. Другое решение — это совершенно иная конструкция, не использующая регулировочные клапаны. Простой тарельчатый клапан заменяется заслонкой, расположенной в системе выпуска, которая приводится в действие мембраной, соединенной с компрессором (см. рис. 91). Управление происходит через тяги, что является препятствием для передачи тепла к мембране, чем исключается ее повреждение. Недостатком такой системы тяг является то, что между отдельными элементами может существовать люфт. Поэтому при регулировке клапан будет работать с некоторым допуском. На практике чаще всего используют именно это решение, потому что такая конструкция легче, более компактна, а также дешевле.

Охлаждаемый корпус оси

Корпус оси претерпел множество изменений. Прежде всего, был увеличен объем для масла в корпусе оси и встроены температурные элементы между турбиной и компрессором.

Следующим этапом разработки стало увеличение массы металла одновременно с появлением наружных охлаждающих ребер.

Тем не менее, опасность переноса тепла от турбины к корпусу оси оставалась высокой, особенно при работе на больших оборотах.

При остановке двигателя и прекращении циркуляции масла прекращается и отвод тепла. Остаток масла в корпусе оси закоксовывается, и эти отложения повреждают корпус. Чтобы решить эту проблему, были разработаны корпусы, охлаждаемые одновременно и маслом, и водой.

Система водяного охлаждения корпуса оси соединена с системой охлаждения двигателя. Так как последняя имеет замкнутый тип, корпус даже после остановки двигателя содержит охлаждающую жидкость. Кроме того, для кратковременного продолжения циркуляции жидкости после остановки двигателя дополнительно может быть встроен небольшой насос. Таким образом, чрезмерное тепло после остановки двигателя может быть отведено.

Уменьшение размеров

Для борьбы с инерционностью наддува (замедленным временем реакции на нажатие педали акселератора) при резком ускорении конструкторы турбокомпрессоров уменьшают размеры турбин и увеличивают скорость их вращения.

Фирмой ККК разработаны новые модели турбокомпрессоров (К-14, К-13, К-12, К-04, К-03) взамен более старой К-24.

Турбокомпрессоры К-14, производящиеся с 1984 года (кроме прочих они устанавливались на автомобили концерна VW: Golf, Passat и Transporter), представляют собой развитие конструкции К-24.

Турбокомпрессор К-24 весит 8,1 кг, а диаметр его ротора равен 60 мм, в то время как турбокомпрессор К-14 весит всего 4,9 кг, а диаметр его ротора равен 50 мм. Ротор турбокомпрессора К-24 весит 0,289 кг, а К-14 — только 0,191 кг. Это дает уменьшение инерционных сил на 40% и приводит к уменьшению времени срабатывания на целую секунду.

Фирма Garrett также усовершенствовала свои турбокомпрессоры: от более старых Т-3 — к Т-2, и от Т-25 — к Т-15, причем последний весит всего 3,3 кг и имеет диаметр ротора 43 мм.

Причина стремления к постоянному уменьшению размеров турбокомпрессоров не ограничивается только соображениями инерционности наддува, но заключается также и в том, что турбокомпрессор и систему промежуточного охлаждения подающегося воздуха все чаще рассматривают как единое целое. В то же время производители автомобилей стремятся использовать малогабаритные двигатели для того, чтобы иметь возможность улучшения аэродинамических форм своих машин. Нужно также принимать во внимание необходимость размещения дополнительных устройств, повышающих комфорт водителя и пассажиров. Использование ныне обязательных катализаторов и уловителей сажи также требует дополнительного пространства, поэтому под капотом современного автомобиля становится просто-напросто тесно, и все, что устанавливается там, должно иметь минимальные размеры.

Использование керамических материалов

Чтобы иметь возможность более эффективно использовать тепловую энергию, конструкторы стали использовать новые материалы для внутренних деталей двигателя для снижения потерь тепла на систему охлаждения. Это неразрывно связано с постоянно возрастающими температурами отработавших газов в современных автомобилях, доходящими до 1250°С.

Поскольку турбокомпрессор использует часть этой тепловой энергии своей турбиной, он тоже должен выдерживать эти повышенные температуры.

Преимущества керамического ротора турбины следующие:

  1. большая температурная устойчивость (свыше 1200°С);
  2. значительно меньший вес (всего лишь 10% от массы металлического ротора);
  3. меньшая инерционность (ускоряется минимум в два раза быстрее, чем металлический);
  4. возможность уменьшения толщины стенок корпуса турбины и их массы;
  5. возможность модификации всего корпуса. Корпус уже не должен быть массивным, чтобы выдерживать удары отколовшихся частей ротора турбины;
  6. меньший коэффициент температурного расширения, чем у металлического ротора (при температуре 900°С линейное расширение не превышает 20% от расширения металлического ротора). Кроме того, он хуже поддается деформации. Поэтому расстояние между лопатками ротора турбины и стенкой ее корпуса может быть уменьшено, что делает турбину более эффективной.

Трудности, возникающие на пути создания керамических роторов, — это хрупкость материала, неустойчивость к воздействию микроскопических частиц, усложненный производственный контроль качества.

В настоящее время испытываются различные варианты соединения металлической оси с керамическим ротором турбины (см. рис. 95). Сварка двух различных материалов представляет ряд трудностей. Существуют также конструкции вала и ротора, состоящие из одной керамической детали (см. рис. 96).

Кроме исследований керамических роторов турбины, разрабатываются также корпусы турбины с внутренним керамическим покрытием.

Для борьбы с микроскопическими твердыми частицами в отработавших газах фирмой Garrett создан корпус турбины с сепаратором и собирающей емкостью для этих частиц (рис. 97).

Изменяемая геометрия

Регулируемое сечение корпуса турбины — идеал к которому стремились, начиная с установки газовой турбины на автомобиле Chrysler в 1958 году.

Интерес к турбине с изменяемой геометрией заключается в том, что она снижает до минимума инерционность и позволяет турбине оптимально работать на повышенных оборотах или при максимальной нагрузке, причем регулировочный клапан не нужен.

До недавнего времени все попытки создания подобной турбины были безуспешны из-за отсутствия подходящих материалов и технологических ограничений при производстве.

В настоящее же время почти все производители турбокомпрессоров представили свои системы с изменяемой геометрией.

Так, фирма Garrett предлагает турбину с регулируемым сечением T-25-VNT с ротором, имеющим дополнительные подвижные лопатки, с помощью которых регулируется поток отработавших газов как низких, так и на высоких оборотах двигателя.

Существует также другая конструкция — Garrett T25-VAT. Она имеет единственный подвижный лепесток в канале турбины, который уменьшает сечение и, соответственно, поток газов на низких оборотах. На более высоких оборотах лепесток полностью убирается, чтобы максимально использовать производительность турбины.

В обеих системах может быть установлен предохранительный клапан для предотвращения перегрузки.

Фирма ККК заявила о начале выпуска надежного и дешевого турбокомпрессора с изменяемой геометрией. В этой конструкции лопатки не приводятся сложной внешней системой рычагов, а свободно колеблются на своих собственных осях таки образом, что максимальная производительность обеспечивается при любых режимах работы двигателя. Степень открывания лопаток ограничена регулировочным кольцом, а положение кольца определяется положением педали акселератора.

Электроника и турбокомпрессор

Разработка надежных предохранительных клапанов способствовала применению турбокомпрессоров на небольших двигателях.

На рис. 99 представлена схема регулирования давления в обычном турбокомпрессоре. Давление наддува направляется к мембране, которая находится под давлением пружины. Когда давление пружины преодолевается, предохранительный клапан открывается. Клапан отрегулирован так, что величина давления наддува находится ниже того уровня, который может вызвать повреждение двигателя.

Эта механическая регулировка, тем не менее, не позволяет полностью использовать энергию отработавших газов.

Для удовлетворения постоянного возрастающих требований, которые сегодня предъявляются к автомобильной технике в области расхода топлива, чистоты отработавших газов и уровня шума, пришлось более критично рассмотреть вопрос управления работой двигателя. Именно поэтому, а также для регулирования давления наддува, в управлении работой двигателя были использованы микропроцессоры. Компьютерный контроль регулировки проходит в два этапа.

На первом этапе на основании определенного числа параметров, таких как температура охлаждающей жидкости, масла, впускаемого воздуха и отработавших газов, анализируется состояние двигателя. Измеряются также число оборотов, положение педали акселератора и другие параметры. Все эти данные анализируются компьютером и используются для определения идеального в данных условиях давления наддува для двигателя.

На втором этапе это значение идеального давления передается на исполнительные устройства, которые регулируют давление во впускной системе. При определении этого давления учитываются также критические условия работы двигателя, в частности, детонация. Акустические датчики позволяют распознать самовоспламенение, насколько малым бы оно ни было. Давление наддува в этом случае понижается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация прекращается, давление наддува снова возрастает до первоначального значения. Компьютер также определяет идеальное давление наддува в случае повторяющейся детонации, возникающей, например, из-за использования низкокачественного топлива.

Естественно, что этот же компьютер может регулировать и другие параметры работы двигателя. На практике программа, в том виде, в котором она описана выше, составляет лишь часть программ, управляющих работой двигателя.

На рисунке 100 представлена схема работы регулятора давления наддува, управляемого компьютером.

Электромагнитный клапан получает электрический сигнал, который определяет время его открывания, и работает, соответственно, как регулятор давления наддува.

Таким образом, на мембрану воздействует не все давление наддува, а только его большая или меньшая часть, которая зависит от положения электромагнитного клапана.

При нажатой педали акселератора компьютер подает команду на закрытие клапана, и все отработавшие газы направляются в турбину, из-за чего давление наддува возрастает и двигатель развивает значительную мощность, что делает возможным резкое ускорение автомобиля. Как только желаемая скорость движения достигнута и больше не увеличивается водителем, предохранительный клапан снова открывается и давление наддува возвращается к своему обычному значению. Такое резкое повышение давления («overboost») длится всего несколько секунд, и безопасность двигателя контролируется различными датчиками, которые при необходимости ограничивают давление.

Охлаждение наддувочного воздуха (intercooler)

Когда предмет сжимают, он нагревается. Воздух, сжатый турбокомпрессором, тоже нагревается и расширяется. Горячий воздух обладает меньшей плотностью и содержит значительно меньше кислорода, чем холодный; поэтому необходимо охладить воздух, так как большее количество кислорода означает большее количество сгоревшего топлива, т.е. двигатель развивает большую мощность.

По этой причине выходящий из компрессора сжатый воздух сначала проходит через радиатор, где охлаждается перед подачей в двигатель (см. рис. 101 и 102).

Подача в двигатель более холодного воздуха заметно снижает температурную нагрузку, что благоприятно влияет на его надежность и долговечность.

Существуют охладители типа «воздух/воздух» и системы, которые используют охлаждающую жидкость для охлаждения воздуха («охлаждающая жидкость/воздух»).

Турбокомпрессоры, устанавливаемые параллельно

В некоторых случаях (особенно на V-образных двигателях) производитель двигателя имеет возможность выбора между одним турбокомпрессором, подающим воздух для всего двигателя, или несколькими меньшими по размеру турбокомпрессорами, каждый из которых подает воздух в отдельный цилиндр. В последнем случае каждый турбокомпрессор приводится частью отработавших газов от группы цилиндров.

Два небольших турбокомпрессора быстрее вступают в работу благодаря своим меньшим роторам, и они обеспечивают лучшую реакцию на нажатие педали акселератора. Впускной и выпускной коллекторы для двух небольших компрессоров будут короче и проще по конструкции, чем для одного большого.

С другой стороны, два малых турбокомпрессора, как правило, дороже одного большого. Кроме того, требуется согласование их работы.

Можно отметить, что кроме двойных турбокомпрессоров, используемых, например, на автомобилях Maserati и на двигателях V8 и V10 грузовиков Mercedes, этот тип системы существует в виде четырех турбокомпрессоров на один двигатель, например, на некоторых двигателях V16 Detroit Diesel, где устанавливается отдельный турбокомпрессор на каждые четыре цилиндра.

Серийные сдвоенные турбокомпрессоры

Невозможно получить хорошую производительность от стандартного турбокомпрессора, если давление наддува должно превышать 3,3 бар. Для этого пришлось бы разрабатывать иные типы турбин и компрессоров, которые намного сложнее, тяжелее и дороже используемых на обычных турбокомпрессорах.

Решение этой проблемы заключается в установке двух серийных турбокомпрессоров друг за другом, т.е. последовательно. Компрессор большего турбокомпрессора (низкого давления) всасывает чистый воздух через воздушный фильтр. Затем воздух сжимается и подается в воздухозаборник меньшего турбокомпрессора (высокого давления). Там воздух еще раз сжимается, после чего подается в двигатель. Отработавшие газы двигателя сначала попадают на турбину турбокомпрессора высокого давления, потом на турбину турбокомпрессора низкого давления и затем в систему выпуска.

Чтобы получить хорошую производительность этой системы, необходимо охлаждать воздух, и делать это как между первым и вторым турбокомпрессорами, так и между вторым турбокомпрессором и двигателем.

Эта система будет еще эффективнее, если в качестве турбокомпрессора низкого давления использовать турбокомпрессор с регулировочным клапаном. Это позволяет работать с меньшей (а значит, и более быстрой) турбиной, с лучшей реакцией на ускорение. Клапан контролирует давление и температуру в воздухозаборнике турбокомпрессора высокого давления, что позволяет обойтись без охладителя. Кроме того, мощность турбины высокого давления возрастает, когда открывается клапан турбины низкого давления.

Турбокомпаунд

Улучшение температурной отдачи двигателя — одна из важнейших задач в процессе модернизации двигателей внутреннего сгорания. В этой связи очень перспективным является турбокомпаунд. Поэтому многие производители двигателей работают в этом направлении; особенно это касается дизельных двигателей с рабочим объемом от 10 до 20 л.

Принцип работы турбокомпаунда состоит в том, что отработавшие газы сначала приводят в действие одну турбину, а при выходе из нее — другую турбину, а затем уже отводятся в выхлопную трубу.

Вторая турбина не приводит в действие компрессор, а помогает вращать коленвал двигателя через гидромуфту и шестеренчатый редуктор.

Турбокомпаунд имеет хорошие перспективы, поскольку энергия отработавших газов будет снова приносить пользу. Вторая турбина дополнительно снижает температуру отработавших газов примерно на 100°С.

Турбокомпаунд уже используется в серийных двигателях концерна Scania.

Причины поломки и выхода турбокомпрессора из строя.

Причин для выхода турбины из строя может быть несколько, однако, если вы соблюдаете все технический регламенты по обслуживанию машины, замене масла и вовремя проводите обслуживание автомобиля, то турбокомпрессор установленный на автомобиль прослужит вам долгие годы и пробег автомобиля 200-250 т. км с одной турбиной это не редкость, а просто внимательное отношение к своему автомобилю и соблюдение требований для его длительной и безпроблемной эксплуатации.

Рекомендуем вас посмотреть виде ролик от фирмы Garrett посвещенный проблемам с турбинами и правильному обращению с ними:

Теперь поговорим о проблемах поподробнее:

1. Моторное масло загрязнено

1.1 Моторное масло имеет включения достаточно крупных абразивных частиц

При наличии в масле крупных абразивных частиц наблюдается сильный износ опорных шеек ротора турбокомпрессора. На шейках и втулках опорных и упорных подшипников можно наблюдать довольно глубокие задиры (фото 1-4).

Фото 1.

Фото 2.

Фото 3.

Фото 4. (справа – новая втулка)

Среди наиболее вероятных причин такого состояния моторного масла прежде всего следует назвать некондиционный масляный фильтр, перепускной клапан которого негерметичен. Вследствие этого часть масла поступает в каналы двигателя без фильтрации.

Также причиной может стать загрязнение моторного масла после неаккуратного ремонта. Зачастую грязь может попасть в масло после вскрытия клапанной крышки головки блока, поддона масляного картера или каких-либо других работ с частичной разборкой двигателя. При этом даже качественный масляный фильтр может оказаться полностью блокированным загрязнениями, после чего срабатывает перепускной клапан и масло поступает в магистраль без фильтрации.

1.2. Моторное масло имеет загрязнения в виде мелких абразивных частиц

Визуально загрязнение масла такого характера проявляется в значительном износе опорных шеек ротора ТК, причем на граничных кромках зон трения будет наблюдаться эффект «зализывания». Втулки радиальных подшипников изнашиваются подобным образом – хорошо видны скругления их кромок. Также хорошо виден износ на внутренней стороне упорного подшипника (фото 5-7).

Фото 5.

Фото 6.

Фото 7.

Наиболее вероятные причины загрязнения такого характера:

— значительное превышение срока службы моторного масла. Любое масло постепенно теряет свои смазывающие свойства, стареет и закоксовывается от воздействия высоких температур. Мелкие частицы кокса проникают сквозь фильтрующий элемент масляного фильтра и постепенно «шлифуют» поверхности трения в подшипниках турбокомпрессора.

— После обкатки двигателя масло не было вовремя заменено. Обкатка сопровождается образованием мелких абразивных частиц металла. При этом абразивные частицы попадают в систему смазки турбокомпрессора, что приводит к его повышенному износу.

2. Моторное масло имеет химические загрязнения

Загрязнение масла такого характера проявляется в виде значительного износа опорных шеек ротора ТК. При этом наличествуют явные признаки перегрева в виде цветов побежалости. Аналогичная картина наблюдается и на внутренних поверхностях опорных втулок подшипников скольжения. (фото 8,9)

Фото 8.

Фото 9.

Наиболее вероятные причины такого загрязнения:

— смешивание моторного масла в картере двигателя с топливом. Причиной может быть нарушение в работе системы подачи топлива. Если одна или несколько форсунок системы впрыска работают неправильно, часть топлива может попадать в картер. Также топливо может попасть в масло вследствие неаккуратного техобслуживания, к примеру измерения компрессии в цилиндрах;

— наличие в масле чрезмерного количества присадок, улучшающих отдельные его свойства;

— применение в двигателе некачественного моторного масла либо вполне качественного, но не предназначенного для использования в моторах с турбокомпрессором.

Химические загрязнения приводят к резкому снижению прочности масляной пленки в подшипниках скольжения ТК. На интенсивных режимах работы агрегата пленка может разрушаться, что приводит к сухому трению как раз в тот момент, когда смазка нужна больше всего.

3. Повреждения, связанные с эксплуатацией ТК на предельных режимах

3.1. Повреждения ТК по причине выхода на запредельные температурные параметры работы

Превышение температурных показателей работы турбокомпрессора приводит к образованию масляного нагара на шейках ротора и значительному закоксовыванию вала. От перегрева тыльная сторона турбинного колеса становится слегка вогнутой, а иногда на ней и примыкающей части вала появляется «апельсиновая корка» (фото 10,11). Наиболее серьезные последствия перегрева – образование на тыльной стороне колеса глубоких трещин (фото 12).

Фото 10.

Фото 11.

Фото 12.

Причины работы турбокомпрессора на запредельных температурах:

— Нарушение в работе системы охлаждения. Самая распространенная причина – неисправный термостат. Также причиной может стать недостаточный уровень охлаждающей жидкости;

— Нарушения в работе газораспределительной системы, к примеру, неправильный угол опережения зажигания или несвоевременный впрыск топлива;

— Использование в двигателе топлива, не соответствующего рекомендованного изготовителем автомобиля;

— для ТК с водяным охлаждением – образование в водяной рубашке ТК воздушной пробки, образование накипи в патрубках системы охлаждения, что приводит к уменьшению их сечения вплоть до полного перекрытия.

3.2. Повреждения ТК, связанные с выходом на запредельные обороты ротора

При превышении максимальных значений частоты вращения ротора ТК может сопровождаться образованием трещин лопаток турбины. При дальнейшей работе агрегата на таких режимах часть лопаток может быть разрушена, вплоть до полного разрыва всего колеса турбины (фото13,14).

Фото 13.

Фото 14.

Причины выхода турбокомпрессора на запредельные частоты вращения:

— Неисправность системы регулирования турбокомпрессора. Наиболее распространенная причина – выход из строя датчика давления воздуха, расположенного во впускном коллекторе двигателя;

— неисправность байпасной системы. Данная неисправность возникает в турбокомпрессорах, в которых предусмотрен перепуск выхлопных газов. Примером может служить турбокомпрессор с нормально закрытыми предохранительными клапанами;

— для ТК с системой VNT ( с изменяемой геометрией) и системой VST (с дросселированием) – заклинивание регулируемых элементов в положении, соответствующем наибольшей производительности турбинной части агрегата.

4. Недостаток смазки турбокомпрессора

4.1.Неисправности узлов и деталей ТК в связи с недостаточностью смазки, как временной, так и постоянной

Дефицит смазки в турбокомпрессоре имеет симптомы, во многом схожие с теми, которые возникают при химическом загрязнении масла. При этом наблюдается изменение цвета ротора и втулок подшипников скольжения. С серебристо-белого эти детали меняют цвет на желтый или даже иссиня-черный. Впоследствии, если причина дефицита смазки не устраняется, может последовать разрушение вала ротора. Самым серьезным последствием может стать отрыв колеса турбины. Также разрушаются дистанционные втулки и подшипники скольжения (фото 15-17).

Фото 15.

Фото16.

Фото 17.

Возможные причины дефицита смазки ТК:

— общая неисправность системы смазки двигателя, в том числе износ деталей маслонасоса, неисправность редукционного клапана маслонасоса, чрезмерное засорение масляного фильтра;

— наличие в поддоне картера больших отложений закоксованного масла и посторонних предметов (кусков прокладок, металлических осколков и т.д.)

В данном случае при работе двигателя на холостых оборотах давление масла в системе находится в пределах нормы. С повышением частоты вращения коленвала увеличивается производительность маслонасоса, что приводит к подтягиванию к сетке маслоприемника имеющихся в поддоне загрязнений, а это может привести к значительному падению давления в системе как раз в тот момент, когда двигатель работает под нагрузкой и нуждается в смазке. Датчик аварийного давления в системе смазки при этом не срабатывает – давление в системе остается выше минимального, но его недостаточно для обеспечения смазки турбокомпрессора, который работает в наиболее тяжелых условиях;

— снижение количества подаваемого в турбокомпрессор масла из-за ненадлежащего состояния подающей трубки. Трубка может быть засорена коксовыми отложениями либо повреждена механически;

— засорение масляных каналов корпуса турбокомпрессора. Причин у такого явления может быть несколько, и самая вероятная из них это попадание частиц кокса в каналы из подающей магистрали системы смазки ТК. При ремонте агрегата рекомендуется заменить подающую магистраль на новую. В крайнем случае достаточно ее тщательно промыть и продуть, чтобы по возможности исключить наличие в ней загрязнений. Масляные каналы корпуса ТК могут быть перекрыты и по другим причинам. Некоторые модели турбокомпрессоров имеют дополнительный масляный фильтр, который представляет собой мелкую сетку в корпусе из пластмассы. Пластмасса в процессе эксплуатации может разрушаться. и ее частицы попадают в каналы и перекрывают их. Также пластмассовый корпус может разрушиться в результате неправильного монтажа.

5. Повреждения турбокомпрессора механического характера

5.1.Повреждения рабочего колеса компрессора твердыми предметами

Твердые предметы, попадающие в канал подачи воздуха и далее в компрессор могут нанести ему непоправимый вред. Это может быть шайба, гайка или какая-либо пластмассовая деталь, попавшая в канал в результате неаккуратного ремонта. Поврежденная крыльчатка компрессора теряет балансировку, после чего турбокомпрессор полностью выходит из строя в течение небольшого периода времени. В худшем случае может произойти обрыв вала ротора или обрыв рабочего колеса компрессора (фото 18-20).

Фото 18.

Фото 19.

Фото 20.

5.2. Повреждения рабочего колеса компрессора мягкими предметами

Несмотря на то, что некоторые предметы, попадающие в компрессор, являются мягкими, последствия от этого не менее плачевные. В компрессор могут попасть сухие листья, кусок ветоши, бумаги или картона, и любой из этих предметов наносит рабочему колесу серьезный вред, после чего выходит из строя весь агрегат. Причина состоит в нарушении балансировки ротора, что приводит к быстрому разрушению дистанционных втулок и подшипников. В худшем случае может произойти излом вала ротора. Мягкие предметы становятся причиной деформации лопаток колеса компрессора, а в некоторых случаях происходит усталостное разрушение лопаток (фото 21,22).

Фото 21.

Фото 22.

5.3.Абразивные повреждения лопаток рабочего колеса компрессора

В воздушную магистраль турбокомпрессора могут попадать абразивные частицы (пыль, песок), которые постепенно изнашивают рабочее колесо. Изменяется форма лопаток, они сглаживаются и истончаются. И хотя дисбаланса при этом не наблюдается – поверхности стираются равномерно, но происходит уменьшение рабочей поверхности колеса, что приводит к падению производительности агрегата (фото 23).

Фото 23.

Наиболее вероятные причины попадания в воздушный канал абразивных частиц – проблемы с воздушным фильтром. В частности, он может быть деформирован таким образом, что часть воздуха не подвергается фильтрации. Также причиной может быть негерметичность патрубка от воздушного фильтра до входа в турбокомпрессор. В этой части наблюдается разрежение, и пыль и песок попросту засасывает внутрь. Еще одна возможная причина – негерметичность системы вентиляции картера.

5.4. Повреждения посторонними предметами на стороне турбины

Как уже было сказано, турбокомпрессор работает на режимах, близких к предельным. Поэтому попадание в турбинную часть даже небольших посторонних предметов может привести к катастрофическим последствиям. Это может быть окалина, твердый нагар, частицы песка, осколок поршня или клапана. Наиболее тяжелый случай – отрыв рабочего колеса турбины. В системах с изменяемой геометрией (VNT) могут быть повреждены лопатки, что приведет к выходу из строя системы регулирования (фото 24, 25).

Фото 24.

Фото25.

Характерные поломки/повреждения деталей турбокомпрессора

В процессе развития конструкция турбокомпрессора стала крайне надежной. Этот факт подтверждается статистикой, по которой менее 1% всех вышедших из строя турбин ломаются по вине брака производителя. Львиная же доля (95%) всех неисправностей и поломок турбин связана с так называемым масленым голоданием, повреждением инородным предметом или загрязнением масла. Около 4% приходятся на все остальные причины.

Теоритически турбокомпрессор вообще может работать вечно, поскольку в нем нет трущихся между собой деталей. Все механизмы работают в масляной ванне под давлением в среднем 0,6 кг/см, из-за чего не подверженные износу (все также теоритически). На практике же ряд причин приводит к различным неисправностям и поломкам.

Обязательно выясните причину, по которой вышел из строя старый турбокомпрессор, перед тем как ставить новый. Это поможет сберечь вам деньги и время, поскольку, не проделав этого, вы рискуете повредить уже новый ТКР.

  • Загрязнение масла

  • Течь масла

  • Масляное голодание

  • Попадание посторонних предметов

  • Перекручивание

  • Клапан EGR

  • Электронный привод

Неисправность турбины: Загрязнение масла

Как загрязнённое может масло вредить турбокомпрессору?

В силу того что ротор турбокомпрессора вращается с частотой в 30 раз превышающую скорость двигателя и достигает 240 000 оборотов за одну минуту при температуре в 950°C, подшипники турбинного колеса испытывают на себе колоссальную нагрузку. Для того, чтобы они и вал турбины не перегревались их обволакивает тонкая масляная пленка. Даже малое нарушение подачи масла в турбину приводит к повреждениям подшипников.

Этот процесс происходит очень быстро, учитывая разницу в скорости оборотов, поэтому крайне важно следить за уровнем масла и состоянием масляных каналов, периодически проверяя их на наличие засоров. Чистые каналы и масло соответствующего качества залог долгой службы турбокомпрессора. Если оно будет грязным то будет действовать как абразив приводя к быстрому износу подшипников и поломке турбины

Что именно вызывает загрязнение масла?

  • Постепенный износ двигателя и попадание его продуктов в масло.

  • Низкокачественный, Засоренный или повреждённый фильтр.

  • Отложение сажи в двигателе может загрязнить даже абсолютно новое масло.

  • Случайное загрязнение или некачественная замена нового масла во время технического обслуживания автомобиля.

  • Деградировавшее из-за несвоевременной замены или перегрева масло.

  • Не правильная работа байпасного (с анг. примерно «безопасного прохода») клапана в масляном фильтре.

Методы предотвращение неисправностей турбины по причине загрязнения масла:

  • Проверьте, соответствие двигателя и типа масла.

  • Замените или очистите трубки подачи масла. Это предотвратит попадание внутрь турбины сажи, которая перекрывает доступ к подшипникам масла.

  • При замене турбокомпрессора всегда используйте новое масло и фильтры.

Неисправность турбины: Попадание внутрь посторонних предметов

Последствие попадания посторонних предметов в турбину?

Турбокомпрессор работает в экстремальных условиях при температуре в 950°C и частоте оборотов до 240 тысяч за одну минуту, и попадание в него постороннего предмета может серьезно навредить компрессорному или турбинному колесу, резкому падению давления и как итог поломке. Наиболее вероятным источником данных предметов является тракт воздушного впуска, через который они всасываются. К ним относятся обломки мотора, компонентов, например, клапанов или инжекторов.

Какие причины повреждения инородными предметами?

  • Попавшие в воздухозаборник обрывки материала прокладок.

  • Из-за некачественного, отсутствующего или поврежденного воздушного фильтра в компрессор попадает мелкая пыль.

  • Осколки клапанов, поршней и инжекторов, попавшие из мотора.

  • Оставленные при обслуживании в воздухозаборнике болты, ветошь, шайбы и гайки.

  • Оставшиеся после поломки предыдущего турбокомпрессора фрагменты.

  • Повредившийся впускной патрубок. Через трещину вовнутрь турбины осуществляется подсос мелких частиц.

Профилактика неисправности попадания посторонних предметов.

  • Используйте исключительно новые прокладки для хорошего уплотнения и защиты от разрушения.

  • Проверьте, состояние всех воздушных патрубков на наличие засоров и посторонних предметов.

  • Устанавливайте оригинальные или «правильные» воздушные фильтры

  • Перед установкой нового турбокомпрессора основательно убедитесь, что во всей системе не осталось осколков или фрагментов вышедшей ранее из строя турбины или самого двигателя.

Неисправность турбины: Течь масла

Каким образом утечка масла может вредить турбине?

Ротор турбокомпрессора может работать на заоблачных для всех двигателей показателях имея более 240 000 об/мин при предельно допустимой температуре отработанных газов 950°C.

Как известно надежность турбины напрямую зависит от тонкой масляной плёнки, которая смазывает подшипники вала ротора.

При помощи уплотнений находящихся со сторон турбины и компрессора масло удерживается в корпусе подшипников. Принцип работы уплотнений совершенно аналогичен поршневым кольцам. Внутри корпусов турбины и компрессора, дабы предотвратить утечку масла, должно быть избыточное давление.

Если в впуске создается препятствие то в компрессорном корпусе появляется раздражение, что в свою очередь приводит к просачиванию внутрь его масла.

При продолжительной работе на холостых оборотах турбина вращается довольно медленно, что означает низкое давление. Этот дисбаланс естественно приводит к постепенной утечки масла в горячую улитку. Оба случая приводят к недостаточной смазке подшипников турбокомпрессора.

Что именно вызывает течь в корпусе компрессора?

  • Пережатый или заблокированный впускной воздуховод.

  • Полностью или частично засоренный воздушный фильтр.

  • Не герметическое соединение интеркулера или впускного воздуховода.

Что вызывает течь масла в корпусе турбины?

  • Неправильная работа и утечки в рециркуляционой системе отработанных газов (иначе EGR)

  • Утечки внутри выхлопной системы.

По какой причине может возникать течь с обеих сторон компрессора и турбины?

  • Установлен турбокомпрессор неподходящей модели.

  • Загибы и пережимы в вентиляционной системе картера.

  • Засоры и уменьшение пропускной способности в трубке масляного слива.

  • В следствии неправильной эксплуатации двигателя образовался нагар внутри корпуса подшипников, наиболее вероятной причиной в этом случае является резкая остановка горячего двигателя.

  • Засоры в подшипниках из-за применения герметиков, плохого масла или повреждение движущих частей.

Меры по предотвращению поломок турбокомпрессора из-за утечкой масла.

  • Слежение за герметичностью выхлопной системы.

  • Периодическая профилактика и очистка масляной трубки и воздуховода

Неисправность турбины: Масляное голодание

Как влияет масляное голодание на работоспособность турбины?

Рабочая скорость оборотов в турбокомпрессоре может варьироваться в различных пределах и достигать частоты в 240 тысяч оборотов всего за одну минуту при огромной температуре в 950°C. Естественно чтобы выдержать такую нагрузку подшипникам требуется хорошее и главное постоянное охлаждение. За несколько секунд без смазки подшипникам турбокомпрессора будет, нанесет урон соизмеримый с десятком минут работы двигателя без охлаждающего масла.

При эксплуатации турбированного двигателя очень важно убедится в том, что давление масла равно уровню указанному производителем для нормальной работы и проследить за тем, чтобы все трубки, отвечающие за масло подачу очищены, в них нет засоров и они могут обеспечить подачу масла под необходимым давлением.

Причины масляного голодания турбированного двигателя

  • В картере низкий уровень масла.

  • Изломанная или перегнутая масляная трубка.

  • В процессе работы в трубке подачи масла образовался шлак (нагар).

  • Образовавший из-за герметика засор внутри масло подающей трубке.

  • Ограничение подачи масла из-за использования неподходящей прокладки.

  • Поврежденный при установке, засоренный от долгой эксплуатации или плохого смазочного материала масляной фильтр.

  • Халатная или неправильная установка турбокомпрессора приведшая к сухому пуску.

  • Пришедший в негодность изношенный насос масла.

  • Длительный простой двигателя. В особенности опасен в зимний сезон.

Профилактика неисправности вызванной масляным голоданием:

  • Замените или хотя бы очистите трубки подающие масло для избавление от засоров в будущем способных привести к масляному голоданию у подшипников.

  • Не в коем случае не применяйте герметик во время установки прокладок, поскольку он довольно легко отпадает и блокирует подачу масла.

  • Очистите или замените трубки подачи масла для устранения любых засоров, способных помешать подаче масла к подшипникам.

  • Важно следить за давлением масла и его поступлением к турбокомпрессору.

  • Если вы решили поменять турбокомпрессор, не забудьте также заменить все фильтры и масло..

Неисправность турбины: Перекручивание

Почему «перекручивание» вредит турбокомпрессору?

Как уже не раз говорилось ранее ротор турбокомпрессора вращается на чудовищной скорости в 240 тысяч о/м при экстремальной температуре 950°C. Такого значения оборотов предусмотренно достигают далеко не все турбины. Если ротор вращается сверх заданной для него максимальной скорости это наносит ущерб подшипникам и крыльчаткам. Для долгой и продуктивной работы ему нельзя выходить за пределы, установленные производителем, иначе грозит перенаддув, который влечет за собой серьезные повреждения внутренних комплектующих и как следствие полный отказ системы. Этот процесс называют «Перекручивание».

Причины вызывающие «перекручивание».

  • Измененные настройки двигателя (так называемый «чипованный»), кардинально или частично не соответствующий заводским настройкам.

  • Отсоединенный или треснутый патрубок, втягивающий в турбокомпрессор неравномерное количество воздуха.

  • Уменьшение пропускного сечения впуского патрубка или засор фильтра для воздуха.

  • Изношенные форсунки.

  • Нарушение работы соединения между электро блоком управления байпасного клапана и им самим.

  • Измененный байпасный клапан.

  • Установка не стандартного (нештатного) или не подходящего турбокомпрессора.

Методы профилактики неисправностей, вызванных «перекручиванием»

  • Проведите диагностику работы электроного блока и датчиков управления двигателя.

  • Убедитесь, что в нет утечки или наоборот засорений мешающих нормальной работе воздушного впуска.

  • Убедитесь в отсутствии засорений или утечек во впускном воздуховоде.

  • Проверьте РСА или привода байпасного клапана он должен перемещаться свободно.

Неисправности турбины: Электронный привод

На новейшие турбокомпрессоры устанавливаются регулируемый сопловый аппарат (система VPT) созданный для быстрого отклика двигателя на низких оборотах и достижение им высокой номинальной мощности. Последние модели турбин используют абсолютно полное электронное управление, обеспечивающие:

  • Работу обратной связи между двигателем и электронным блоком управление

  • Точность

  • Обратную связь с электронным блоком управления двигателем (ЭБУ).

  • Быстрый отклик

Ротационный Электронный Привод (REA) или Простой Ротационный Электронный Привод (SREA) контролируют перемещение лопаток. Симптомами его неисправности является:

  • Регистрация ошибок ЭБУ двигателем.

  • Избыточное и недостаточное давление наддува.

  • Различные шумы во время движения.

Действия при подозрении какой либо неисправности SREA или REA?

Обратитесь к клиенту с просьбой как можно полнее и детальнее описать проблему, в особенности то время и обстоятельства, при которых она возникла.

  1. Сколько времени было потрачено на прогрев двигателя перед стартом?

  2. Какова была нагрузка и количество оборотов? Автомобиль в это время сбрасывал или набирал скорость?

  3. Работали ли в этот момент еще, какое либо электрооборудование? Например, стеклоподъёмники.

  4. Если да то – не было ли отказов другого оборудования в момент предполагаемой поломки?

  5. Зайдите в историю обслуживания автомобиля и проверьте, были ли недавно зафиксированы ЭБУ ошибки в замененных компонентах двигателя и в частности регуляционного клапана отработанных газов (EGR).

  6. Как давно осуществлялась замена генератора и аккумулятора? Опускался ли вольтаж так сильно, что со стартера мотор не заводился? Попросите проверить уровень вольтажа в данный момент. Если он в норме, то привод сам перезапустится.

  7. Подключите диагностическое оборудование к ЭБУ. Перепишите периодичность и коды ошибок.

  8. Дайте двигателю остыть. Когда мотор станет холодным, проверьте связь между турбиной и приводом (SREA/REA). Убедитесь, в том, что тяга надежно присоединена с обоих концов. Затем проверьте наличие небольшого люфта по обеим ее сторонам у тяги. Если вдруг его нет, следует проверить наличие коррозии в соединениях, которые мешают движению.

  9. Убедитесь, что рычаг управляющий давлением перемещается свободно и ему ничего не мешает, для этого отсоедините его. Если движение чем либо осложнено попробуйте покачать его вручную. Это должно помочь, если у вас нет проблем, с которыми вам самостоятельно не справится, но если вдруг механизм, как и раньше, двигается очень туго или же отказывается двигаться вовсе, обратитесь в специализированную мастерскую или к производителю. Не используйте рычаг опять пока вам не будет оказана хорошая техническая помощь, это может привести к сильной поломке, которую нельзя будет исправить.

  10. Убедитесь, что электрический разъем (SREA/REA) состыкован довольно плотно. Снимите фиксаторы нажав на них с обоих сторон, затем отсоедините разъем, после чего проверьте его состояние, нет ли каких либо повреждений, не залилась ли вода внутрь него или в уплотнения.

  11. Убедитесь в том, что на стенках разъёма (SREA/REA) нет трещин и повреждений. Воспользуйтесь тем, что он отсоединен и проверьте провода на наличие разрывов или других повреждений. Если все нормально вставьте плотно разъем обратно так чтобы фиксаторы издали характерный щелчок.

  12. Потяните за каждый провод аккуратно по отдельности. Они должны там плотно сидеть. Если используется меньше пяти проводов, остальные отверстия должны быть закрыты заглушками.

  13. Не запуская двигатель, включите зажигание. Посмотрите, изменился ли статус световой сигнализации и лампы свечи накаливания. Прислушайтесь к звуку REA должен переместить лопатки в минимально открытое состояние.

  14. Запустите двигатель и повторите предыдущий пункт, произошли ли какие то изменения в работе REA?

  15. Выключите зажигание. Ротационный Электронный Привод должен мгновенно перевести лопатки в открытое состояние, этот процесс сопровождается пронзительным звуком. В различных турбокомпрессорах REA действуют по-другому, возможно придется повторить этот пункт 2-3 раза. Данное действие поможет очистить путь лопаток

Внимание: в случае если вам не помогли найти причину неисправности пункты 1-7, то лучше остановится и заняться диагностикой двигателя. Причина поломки, скорее всего, находится в нем. Ротационный Электронный Привод очень надежен и редко приводит к подобным проблемам.

Неисправность турбины: Клапан EGR

Как расшифровывается клапан EGR и зачем он нужен?

Клапан рециркуляции отработавших газов или сокращенно EGR предназначен для перенаправления назад во впуск малой части отработавших газов. Это действие приводит к снижению максимальной температуры горения топлива. Рециркуляционый клапан отработавших газов всегда закрывается на холостом ходу, поскольку иначе это может привести к образованию пиковой мощности и неустойчивости, тогда добавление отработавших газов приведет к потери динамики.

При определенных обстоятельствах клапан EGR может подвергнуться образованию сажи (закоксоваться). Это приведет к значительным изменениям в работе системы.

Стоит внимательно следить за состоянием клапана EGR, поскольку из-за его неисправности внутри турбинного корпуса может возрасти отложение кокса/сажи, что приведет к блокировке VNT.

Признаки того, что клапан EGR неисправен:

  • «Холодный» двигатель плохо работает.

  • Резкий, не стабильный холостой ход отличающийся неустойчивостью и чрезмерной эмиссией азота. В запущенных случаях невозможность работы на холостом ходу в принципе. Плохая работа «холодного» двигателя.

  • Неоправданно большой рост потребления топлива.

  • Резкое падение мощности.

  • Появление в ЭБУ кода или световой индикации неисправности.

Признаки того, что клапан EGR закоксован или забит.

  • В вакуумную часть клапана идет подсос воздуха.

  • Неправильно подключены, имеют утечки или отключены вовсе вакуумные линии.

Признаки того, что на твердые отложения попали на тарелку или клапан.

  1. Повреждения клапана EGR из-за перегрева:

  • Неправильная эксплуатация автомобиля;

  • Сильное встречное давление в системе выпуска выхлопных газов;

  • сломанный предохранительный клапан компрессора из-за чего он не срабатывает.

  1. Пережатая отложениями трубка EGR.

  2. Подтекания или сильная течь в турбокомпрессоре масла.

  3. Ошибки в работе расходометра или какого другого датчика.

  4. Поврежденный предохранительный клапан.

  5. Неисправен электрический переключатель преобразователя давления.

Существуют 4 главных причины повреждения турбин:

  1. — недостаток масла ( масляное голодание);
  2. — попадание посторонних предметов;
  3. — загрязненное масло;
  4. — подпор картерных газов.

Недостаток масла (масляное голодание)

Первыми выходят из строя из-за недостатка масла подшипники. После выхода из строя одного или нескольких подшипников могут последовать другие повреждения, такие как трение роторов турбины и компрессора, износ уплотнительных колец. В худшем случае может обрыв вала турбины.

При нормальных условиях вал и подшипники турбокомпрессора работают при температуре 60-90ºС.

В связи с тем, что турбины на большинстве дизельных двигателей охлаждаются проходящим через корпус маслом, недостаточное его количество приводит к резкому увеличению теплоотдачи на вал турбины со стороны турбинного колеса. Это тепло в совокупности с теплом, выделяющимся при трении в подшипниках, поднимает температуру вала приблизительно до 400°С, вызывая его перегрев и коксование остатков масла на валу. Коксом забиваются маслоподводящие отверстия подшипников, а также среднего корпуса турбины, что приводит к еще большему дефициту масла.

При всех этих условиях перегретый вал начинает вращаться в подшипниках практически «на сухую», что приводит к срыву масляного клина, износу оловянного слоя на бронзовых подшипниках, и налипания бронзы на перегретый вал. Происходит усиленный износ подшипников, увеличение зазоров в них до недопустимых, что приводит к повышенному люфту всего вала. Увеличение зазоров в подшипниках, в свою очередь, ведет к тому, что турбинная и компрессорная крыльчатки, выбрав весь зазор между корпусами, начинают изнашиваться о них. Вступает в это дело еще одна сила — привнесенный дисбаланс, который становится много больше допустимого и ускоряет процесс умирания турбокомпрессора. Обычно это сопровождается характерными звуками — скрежетом, свистом, воем турбины.

Всего в пункте «Недостаток масла» можно выделить три подпункта:

  1. Резкое(быстрое) масляное голодание
  2. Плавное(медленное) масляное голодание
  3. Периодическое масляное голодание
  • Резкое (быстрое) масляное голодание возникает в случае резкой утраты турбиной возможности смазываться проточным маслом. Это может быть вызвано обрывом маслоподводящей трубки, ее перегиба, резким уменьшением производительности масляного насоса, отсутствия масла в системе смазки и т.д. Сюда можно включить также и «сухой пуск», который иногда бывает при неправильной установки турбокомпрессора после ремонта или покупки нового. В среднем корпусе турбины остается воздушная пробка, которую масло не может продавить достаточно долгое время, приводя к тому, что на заведенном двигателе вал турбины вращается в условиях недостатка масла, что неизбежно ведет к его перегреву, образованию коксовых отложений, налипанию бронзы подшипников и выходу из строя всего турбокомпрессора в достаточно малые сроки.
  • Плавное (медленное) масляное голодание — это постепенный износ деталей турбокомпрессора, который работает в условиях постоянного небольшого недостатка масла. Оно поступает в турбину, но его количества недостаточно для охлаждения и работы на высоких нагрузках. В таких случаях все вышеописанные процессы происходят медленно, турбина умирает не быстро, это может растянуться на месяцы. Происходит это в случаях плохой производительности масляного насоса, закоксованности маслоподающей магистрали, перегибов трубок, использования неподходящих масел.
  • Периодическое масляное голодание связано с неправильной эксплуатацией турбированных двигателей. Основная причина такого масляного голодания — остановка двигателя после активной эксплуатации. При работе на больших нагрузках, высоких оборотах, турбина на двигателе достаточно сильно разогревается, а охлаждение происходит либо только маслом, проходящим через турбину, либо системой охлаждения двигателя ( характерно для бензиновых двигателей). Поэтому при резкой остановке двигателя в разогретую турбину прекращается подача масла для ее охлаждения, или масла и охлаждающей жидкости. Это приводит к тому, что вал, подшипники и корпус турбины, имея высокую остаточную температуру, нагревают оставшееся в полостях турбины масло до температур, при которых оно начинает коксоваться, возникают отложения в маслоподающих каналах, что приводит к уменьшению их сечения и в дальшейшем — меньшей пропускной способности масла через эти каналы. Таким образом можно сказать, что владелец сам медленно, планомерно «убивает» свой турбокомпрессор неправильной эксплуатацией. После активной езды, работы, больших нагрузок, двигателю нужно двать 2-3 минуты, чтобы охладить маслом и охлаждающейся жидкостью все агрегаты, которые в этом нуждаются, в первую очередь — турбину.

Примеры масляного голодания:

Попадание посторонних предметов

Такую причину выхода из строя турбокомпрессора, как попадание посторонних предметом можно разделить на две части:

  1. Попадание в компрессорное колесо
  2. Попадание в турбинное колесо

Начнем по порядку.

1.Попадание посторонних предметов в компрессорное колесо по большей части указывает на неисправности систем подачи воздуха в турбину. Это может быть поврежденный воздушный фильтр ( или его отсутствие), который не препятствует попаданию мелких частиц, пыли, находящихся в воздухе; неплотность соединений впускных патрубков, через которые может поступать нефильтрованный воздух, их повреждение. Причем физический размер частиц, находящихся в подаваемом нефильрованном воздухе может варьироваться в больших пределах: от мелких, вызывающих сошлифовывание лопаток компрессорного колеса, до крупных, вызывающих серьезные деформации.

Повреждения компрессорного колеса могут вызывать не только частицы, содержащиеся в неочищенном воздухе, но и отслоившиеся кусочки фильтра, части поврежденной системы подачи воздуха; забытые при ремонте двигателя куски ветоши, инструмент и другие твердые и мягкие предметы.

фото поврежденных компрессорных колес для примера:

2.Повреждения турбинного колеса могут быть вызваны попаданием частей разрушенных поршневых колец, седел клапанов, самих клапанов, а также частей прогорающих поршней. Все эти причины являются следствием критической неисправности двигателя. Необходимо в срочном порядке искать проблему и устранить ее.

Пример попадания постороннего предмета в турбинное колесо:

Повреждения компрессорного или турбинного колес влечет за собою появление дисбаланса, пусть даже небольшого, но на больших скоростях вращения ротора он становится критическим, разрушающим, и в дальнейшем приводит к поломке турбокомпрессора.

Загрязненное масло

Турбокомпрессор тесно интегрирован в систему жизнеобеспечения двигателя, о чем мы уже говорили выше, и смазывается тем же самым маслом, что и двигатель, за одним исключением! Масло в турбину в большинстве современных моторов поступает после того, как прошло через основные системы двигателя и смазало их. На практике это означает, что в турбину оно попадает самым последним, после чего сливается прямо в картер. Редкие исключения бывают, когда для смазки турбокомпрессора предусмотрена отдельная магистраль, идущая напрямую с масляного насоса.

В подавляющем большинстве случаев магистраль не отдельная. Масло, поступая в двигатель, не только смазывает его ,но и смывает продукты трения, коксовые отложения и другие примеси, которые будут отфильтрованы в масляном фильтре. Но до этого момента масло еще должно поступить в турбину, агрегат высокоточный и требовательный к качеству и чистоте масла.

Если в двигателе имеются неисправности, приводящие к износу трущихся частей, то продукты трения неминуемо будут вымываться маслом и проходить дальше, попадая в другие системы двигателя, в том числе и турбину. В турбине эти примеси приводят к износу ротора и подшипников, увеличивая радиальный люфт и приводя в дальнейшем к поломке.

На фото показаны несколько примеров износа, который образуется при наличии посторонних, абразивных частиц в масле :

Если в турбокомпрессоре наблюдается такая картина, значит и многие механизмы двигателя имеют такой же износ. Необходимо в срочном порядке отремонтировать двигатель, устранить причину загрязнения масла абразивными примесями и только после этого ставить восстановленный или отремонтированный турбокомпрессор снова на двигатель. Если не устранить причину, после ремонта турбины она выйдет из строя снова, именно по этой же причине.

Подпор картерных газов

Картерные газы присутствуют практически в любом двигателе. Образуются они за счет прорыва газов из цилиндров при взрыве рабочего тела через поршневые кольца. Чем новее мотор, тем меньше этих газов, ведь и кольца , и стенки цилиндров находятся в лучшем состоянии, чем у моторов с пробегом. Обычно картерные газы удаляются системой вентиляции картера. В некоторых случаях это просто сопун, выведенный в сторону, в некоторых случаях — более сложная система, подающие картерные газы снова на впускную систему двигателя.

По мере износа мотора картерных газов становится больше, а система вентиляции или не справляется с их удалением, или совсем перестает работать надлежащим образом. При таком положении дел, количество газов в картере двигателя начинает создавать там некое положительное давление. И вот это давление в картере создает своеобразную пробку, которая мешает маслу из турбины самотеком сливаться обратно в картер. Масло начинает искать выход из турбины через уплотнительные кольца, турбина начинает течь. Если масло выходит через компрессорную часть турбины — оно попадает в интеркулер, оттуда в двигатель, и сгорает. Если его было мало, то ничего страшного может и не произойти.

Если течь турбины происходит через турбинную часть ( горячую), то масло на выходе сразу же начинает подгорать и коксоваться из-за высокой температуры выхлопных газов. Через какое-то время этот налет кокса достигает таких размеров, что мешает ротору турбины свободно вращаться, теряется производительность, сам ротор начинает изнашиваться, что , в конечном результате, приводит к поломке и необходимости ремонта турбокомпрессора.

Так же, если давление картерных газов много превышает допустимые пределы, эти газы могут через систему слива попасть в корпус турбины. Приводит это к тому, что температура масла поднимается внутри турбины и начинает коксоваться уже в корпусе, оседая на всех поверхностях, уменьшая допустимые зазоры и приводя к тому, что количество попадающего масла в турбину уменьшается. Все эти процессы снова же приводят к выходу из строя турбины и необходимости ее ремонта.

Резюме

Бытует мнение, что турбина — ненадежная деталь двигателя, которая периодически сама по себе ломается, выходит из строя. Но это очень большое заблуждение.

Турбина — надежный агрегат, расчитанный на весь срок службы мотора. Она тесно интегрирована с другими системами двигателя и любая неисправность этих систем будет сказываться на турбине (турбокомпрессоре).

Турбина является своего рода лакмусовой бумажкой, индикатором состояния мотора; сама по себе она не сломается, но при выходе из строя укажет на неисправность той или иной системы двигателя, которая и стала виной поломки турбины.

Наша задача при ремонте Вашего турбокомпрессора — установить истинную причину выхода из строя турбокомпрессора, донести ее до Вас, чтобы Вы смогли устранить неисправность двигателя и больше не беспокоиться по этому поводу, получая удовольствие от вождения.

Помните : Сломанная турбина — это следствие, а саму причину нужно установить и устранить!