Литий ионный аккумулятор для автомобиля

Содержание

Литиевый аккумулятор для автомобиля. Есть ли преимущества?

Обычно мы привыкли, что на автомобилях в качестве аккумуляторов используются свинцово-кислотные с различными добавками в пластинах батареи. Добавки могут быть от кальция до серебра, электролит может иметь форму геля, жидкости или быть запечатанным в AGM. Возникает логичный вопрос, вот в мобильниках используются эффективные литиевые батареи, почему такие же не ставят в автомобили?

Почему Литий-ионные аккумуляторы не ставят на машины

Литиевые батареи в автомобилях

Литиевые аккумуляторы – довольно непростая вещь в контексте автомобильной тематики. Их неохотное использование обросло множеством мифов, однако есть и вполне объективные причины, делающие установку таких батарей в данный момент нежелательной. На заре изобретения литиевых батарей в минусе был металлический литий, потом его сменил кокс, а сегодня всё больше распространяется графит. После добавления оксида кобальта аккумуляторы снизили свой нижний температурный порог, а также повысилось количество циклов заряд\разряд. Все литиевые батареи оснащены специальной защитной платой, контроллером. Li-ion батареи по материалу катода различают:

  • Кобальто литиевые – LiCoO2;
  • Литий полимерные – LiPol

Литий-ионные аккумуляторы

Отличие основное такого аккумулятора в том, что электролит у него не жидкость, а полимер. Характеристики у полимеров существенно лучше, низкий саморазряд, более высокая плотность, компактность, отсутствует эффект памяти. Рабочая температура от минус двадцати. Наиболее перспективным для оснащения автомобилей специалисты считают LiFEPO4. В этом аккумуляторе материал катода с добавлением железа, а также фосфатов. Из основных преимуществ этого варианта можно выделить:

  • Долговечность, батарея очень медленно теряет свою ёмкость. На длительном промежутке времени это очень заметно.
  • Стабильно держит напряжение разряда, отклонения от правильных 12,8В минимальное.
  • В составе нет кобальта, то есть батарея нетоксична, угрозы экологии нет.
  • Пиковые токи существенно выше обычных Liion.
  • Разряжается медленнее.
  • Не взрывоопасен, поскольку термическая стабильность на высоте.
  • Может работать в условиях низких температур, вплоть по минус пятидесяти градусов.

Из минусов внимания заслуживает меньшая удельная плотность, да и контроллер использовать обязательно.

Преимущества Литий-ионных аккумуляторов

Так свинец или литий?

Если брать энергетическую плотность, то здесь впереди, конечно, литиевые элементы, у них гораздо лучше дела с продолжительностью жизненного цикла, заряжаются быстрее, лучшее сопротивление, нет практически саморазряда. Однако практически не ставят их, почему? Всё, на самом деле, банально, они дорогие, к тому же хуже себя чувствуют, чем кислотные на морозе. Безопасность свинцово кислотных батарей гораздо выше, что время от времени нам показывают случаи с возгоранием аккумуляторов в смартфонах.

Особенности использования литиевых аккумуляторов для автомобилей

Литиевый аккумулятор для автомобиля набирает все большую популярность. Легкие литиевые аккумуляторы разработаны для целого ряда транспортных средств, начиная от мотоциклов и заканчивая военной техникой. Растущий спрос на них заставил поставщиков и ученых сосредоточиться на повышении плотности энергии, рабочей температуры, безопасности, долговечности, времени зарядки и выходной мощности литий-ионных батарей.

Разработка литиевых АКБ началась с 1912 года под руководством Г.Н Льюиса, но появились первые литиевые неперезаряжаемые источники питания только в начале 1970-х годов. В 1980-х годах попытались разработать перезаряжаемый питающий элемент, но разработка не удалась из-за нестабильности в металлическом литии, используемом в качестве основного материала.

Литиевая батарея использует литий в качестве анода. АКБ Lion используют графит в качестве анода и активных материалов в катоде.

В связи с нестабильностью лития во время зарядки ученые стали использовать неметаллический раствор с использованием лития. В 1991 году фирма «SONY» запатентовала первый ион Li батарею. Продолжая развиваться, она остается популярной и перспективной на мировом рынке.

Свинцово-кислотные источники питания уступают литий-ионным автомобильным аккумуляторам по многим показателям. Вес литиевых АКБ на 80 % легче свинцово-кислотных. В батарее Lion долгое время сохраняется зарядка, срок службы достигает десяти лет.

С другой стороны, цена на автомобильные литиевые аккумуляторы в несколько раз превышает стоимость свинцово-кислотных.

Автомобильный литий-ионный аккумулятор часто используется в электромобилях. Электромобиль приводится в движение, используя энергию источника питания.

Типы батарей электромобиля

В электромобилях используется три типа аккумуляторных батарей: свинцово-кислотные, батареи гидрида металла никеля и литий-ионные источники питания.

Свинцово-кислотные АКБ изобретены в 1859 году и считаются привычной формой источника питания. Они использовались во всех типах автомобильного транспорта. Это вид жидких батарей, которые содержат емкости со слабым раствором серной кислоты.

Свинцовые электроды и кислота используется для производства электроэнергии в АКБ. Источник питания не имеет сложности в обслуживании и отличается небольшой стоимостью. Но содержит опасные газы, которые приводят к взрыву при неправильной эксплуатации.

Никель-металлогидридные аккумуляторы используются с 1980 года. Это маленькая, легкая и вместительная батарея, которая имеет высокую плотность и не содержит никаких токсических металлов.

Литий-ионные аккумуляторы для автомобилей используются с начала 1990 года. Они отличаются очень высокой плотностью энергии.

Из-за облегченных и низких требований к техническому обслуживанию, литий-ион используется в электронных устройствах, часто в портативных компьютерах.

Этот тип питающих элементов считается лучшим для питания электромобилей.

Какие бывают типы литий-ионных батарей и где используются

В настоящее время используются три вида LIB, которые отличаются материалами катода.

Катоды лития, содержащие кобальт (Limo2).

Этот тип особенно эффективен. Кобальтовый ион Со3+ маленький, поэтому катод построен таким образом, что литий-ионные катоды легко перемещаются. Это важно для высокой плотности энергии и емкости, чтобы выпускать маленькие и легкие батареи. Используется в портативной электронике и электромобилях.

Литий-кобальтовый оксид LiCoO2 (LCO) – это тонкое устройство чувствительно к повреждениям, поэтому используется лишь в электроприборах.

Литий-Никель-Кобальт-Оксид Алюминия (LiNiO.8Co0.15Alo.05 или NCA) является надежным соединением. Обеспечивая хорошую плотность энергии и высокую мощность, эти материалы используются как литиевые аккумуляторы 12 вольт для автомобиля.

Литий-Никель-Марганец-Кобальт-Оксиды (NMC) – прочнее и долговечнее, чем тип NCA. Большинство производителей электромобилей используют этот катодный материал. При этом существует несколько вариантов, в которых металлы содержат никель, марганец и кобальт в различных соотношениях. Чем больше доля никеля – тем выше содержание энергии.

Катоды из оксида фосфора-железа-лития (LiFePO4 или LFP).

Этот вид также прочен, но имеет низшую плотность энергии, чем катоды LiMО2. Китайские производители используют для электромобилей городского цикла. Заряда хватает на короткие расстояния.

Катоды из оксида марганца-лития (LiMn2O4 или LMO).

Этот вид раньше использовался в электромобилях, но катоды, содержащие кобальт, превосходят их по стабильности и плотности энергии.

В этом видео описаны подробные характеристики ионных аккумуляторов, размеры, состав и расшифровки маркировок.

Преимущества литиевых аккумуляторов

  • Очень высокая плотность энергии. Превосходит в четыре раза свинцово-кислотные источники питания.
  • Высокое напряжение клеток. Литий-ионная ячейка заменяет три ячейки NiCd или NiMH, которые обеспечивают только 1,2 вольта. Ученые в настоящее время работают над обеспечением более высокого напряжения в клетках. Чем больше напряжение в клетках, тем меньше клеток требуется. Это дает возможность сделать батарею легче и вместительнее.
  • Переносят высокие токи разряда. Это позволяет работать автомобильным приборам, таким как холодный стартер или приводы для гибридных автомобилей с маленькой емкостью АКБ.
  • Увеличивают мощность и производительность, в зависимости от требований.
  • Имеют возможность быстрой зарядки.
  • Отсутствует эффект памяти – полная разрядка не влияет на продолжительность срока службы.
  • Низкая скорость саморазряда (от трех до пяти процентов в месяц, сохранят работоспособность до десяти лет).
  • При заряде батареи на 100 % способна отдать энергию тока без технических повреждений.

Вариации базового химического состава (например, различные анодные и катодные материалы) позволяют разнообразить характеристики производительности для конкретных применений.

Также доступны батареи маленького размера. Материал электрода и керамические электролиты могут быть разделены на твердые (оксид алюминия/силикагель) или гибкие (акриловые волокна) подложки для производства энергии высокой плотности для тонких и плоских батарей.

Недостатки литий-ионных батарей

  • Чувствительность к глубокой разрядке, перегрузка и слишком высокая температура. Но на практике это редко является проблемой. Аккумуляторы уже имеют встроенную электронику, которая защищает от негативных влияний. При использовании LIB без встроенной электроники рекомендуется использовать зарядное устройство, которое для нее предназначено.
  • Повышенная чувствительность к высоким и низким температурам. Оптимальная рабочая температура в пределах 10–35 градусов. При низких температурах мощность батареи падает. Также существуют специально предназначенные ионные источники питания для низких температур, которые поддерживают заряд при температуре -40 градусов, только с ограниченными разрядными потоками.

Безопасность литиевых батарей

При перегреве или перезарядке LIB могут подвергаться разрушению. Это приведет к утечке ядовитых газов, взрыву и пожару. Чтобы этого избежать, батарея лития содержит отказоустойчивую схему, которая отключает источник питания, когда напряжение находится в опасном диапазоне.

Короткое замыкание приведет к перегреву, возгоранию и взрыву. Литий-ионные аккумуляторы, в отличие от свинцово-кислотных, изготавливаются под высоким давлением, они имеют легковоспламеняющийся жидкий электролит. Их качество строго контролируется при изготовлении.

Литий-ионный аккумулятор для автомобиля имеет множество положительных характеристик, но использование его в бензиновых и дизельных двигателях не эффективно и в данное время не применяется. Генератор, который вырабатывает переменный ток в автомобиле, не приспособлен заряжать данный вид аккумуляторов.

Это видео расскажет об использовании литий-ионных аккумуляторов для бензиновых и дизельных двигателей.

Литий

Запрос «Lithium» перенаправляется сюда; см. также другие значения. Запрос «Li» перенаправляется сюда; см. также другие значения. Эта статья — о химическом элементе. О лекарственных средствах см. Препараты лития.

Литий
← Гелий | Бериллий →
3 H
Li

Na
3Li
Внешний вид простого вещества
Очень лёгкий, очень мягкий металл серебристо-белого цвета
Литий
Свойства атома
Название, символ, номер ли́тий / Lithium (Li), 3
Атомная масса
(молярная масса)
а. е. м. (г/моль)
Электронная конфигурация 2s1
Радиус атома 145 пм
Химические свойства
Ковалентный радиус 134 пм
Радиус иона 76 (+1e) пм
Электроотрицательность 0,98 (шкала Полинга)
Электродный потенциал -3,06В
Степени окисления +1
Энергия ионизации
(первый электрон)
519,9 (5,39) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,534 г/см³
Температура плавления 453,69 K (180,54 °C, 356,97 °F)
Температура кипения 1613 K (1339,85 °C, 2443,73 °F)
Уд. теплота плавления 2,89 кДж/моль
Уд. теплота испарения 148 кДж/моль
Молярная теплоёмкость 24,86 Дж/(K·моль)
Молярный объём 13,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 3,490 Å
Температура Дебая 400 K
Прочие характеристики
Теплопроводность (300 K) 84,8 Вт/(м·К)
Номер CAS 7439-93-2
Эмиссионный спектр

3 Литий
6,94
2s1

Ли́тий (Li, лат. lithium) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом Иоганном Арфведсоном сначала в минерале петалите (Li,Na), а затем в сподумене LiAl и в лепидолите K2Li3Al5(F,OH)4. Металлический литий впервые получил Гемфри Дэви в 1818 году.

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра. Кристаллическая решётка относится к пространственной группе P 63/mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды). Вследствие своей низкой плотности литий всплывает не только в воде, но и, например, в керосине.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Карминово-красное окрашивание пламени солями лития

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранят в керосине (к тому же плотность лития столь мала, что он будет в нём плавать); он может непродолжительное время храниться на воздухе.

Во влажном воздухе медленно реагирует с азотом и другими газами, находящимися в воздухе, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3.

6 Li + N 2 ⟶ 2 Li 3 N {\displaystyle {\ce {6Li + N2 -> 2Li3N}}}

2 Li + 2 H 2 O ⟶ 2 LiOH + H 2 {\displaystyle {\ce {2Li + 2H2O -> 2LiOH + H2}}}

Поэтому длительно литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках.

В кислороде при нагревании горит, превращаясь в оксид Li2O.

4 Li + O 2 ⟶ 2 Li 2 O {\displaystyle {\ce {4Li + O2 -> 2Li2O}}}

Интересная особенность лития в том, что в интервале температур от 100 °C до 300 °C он покрывается плотной оксидной плёнкой и в дальнейшем не окисляется. В отличие от остальных щелочных металлов, дающих стабильные надпероксиды и озониды; надпероксид и озонид лития — нестабильные соединения.

В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура самовоспламенения находится в районе 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.

Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H2.

2 L i + 2 H 2 O → 2 L i O H + H 2 {\displaystyle {\mathsf {2Li+2H_{2}O\rightarrow 2LiOH+H_{2}}}}

Реагирует также с этиловым спиртом (с образованием этанолята):

2 Li + 2 C 2 H 5 OH ⟶ 2 C 2 H 5 OLi + H 2 {\displaystyle {\ce {2Li + 2C2H5OH -> 2C2H5OLi + H2}}}

Вступает в реакцию с водородом (при 500—700 °C) с образованием гидрида лития:

2 Li + H 2 ⟶ 2 LiH {\displaystyle {\ce {2Li + H2 -> 2LiH}}}

Реагирует с аммиаком при нагревании, при этом сначала образует амид лития (220 °C), а затем имид лития (400 °C):

2 Li + 2 NH 3 ⟶ 2 LiNH 2 + H 2 {\displaystyle {\ce {2Li + 2NH3 -> 2LiNH2 + H2}}}

2 Li + NH 3 ⟶ Li 2 NH + H 2 {\displaystyle {\ce {2Li + NH3 -> Li2NH + H2}}}

Реагируя с галогенами (с иодом — только при нагревании, выше 200 °C) образует соответствующие галогениды:

2 Li + F 2 ⟶ 2 LiF {\displaystyle {\ce {2Li + F2 -> 2LiF}}}

2 Li + Cl 2 ⟶ 2 LiCl {\displaystyle {\ce {2Li + Cl2 -> 2LiCl}}}

2 Li + Br 2 ⟶ 2 LiBr {\displaystyle {\ce {2Li + Br2 -> 2LiBr}}}

2 Li + I 2 ⟶ 2 LiI {\displaystyle {\ce {2Li + I2 -> 2LiI}}}

При 130 °C реагирует с серой с образованием сульфида:

2 Li + S ⟶ Li 2 S {\displaystyle {\ce {2Li + S -> Li2S}}}

В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид):

2 Li + 2 C ⟶ Li 2 C 2 {\displaystyle {\ce {2Li + 2C -> Li2C2}}}

При 600—700 °C литий реагирует с кремнием с образованием силицида:

4 Li + Si ⟶ Li 4 Si {\displaystyle {\ce {4Li + Si -> Li4Si}}}

Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор.

В водном растворе ион лития имеет самый низкий стандартный электродный потенциал (−3,045 В) из-за малого размера и высокой степени гидратации иона лития.

Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.

Нахождение в природе

Геохимия лития

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.

Основные минералы лития — слюда лепидолит — KLi1,5Al1,5(F, OH)2 и пироксен сподумен — LiAl. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространённых породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносолёных озёр.

Месторождения

Месторождения лития известны в Чили, Боливии (Солончак Уюни — крупнейшее в мире), США, Аргентине, Конго, Китае (озеро Чабьер-Цака), Бразилии, Сербии, Австралии.

В России более 50 % запасов сосредоточено в редкометалльных месторождениях Мурманской области.

Изотопы лития

Основная статья: Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6Li (7,5 %) и 7Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов (4Li − 12Li) и два ядерных изомера (10m1Li и 10m2Li). Наиболее устойчивый из них, 8Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3Li (трипротон), по-видимому, не существует как связанная система.

7Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть в период от 1 секунды до 3 минут после Большого Взрыва) в количестве не более 10−9 от всех элементов. Некоторое количество изотопа 6Li, как минимум в десять тысяч раз меньшее, чем 7Li, также образовано в первичном нуклеосинтезе.

Примерно в десять раз больше 7Li образовались в звёздном нуклеосинтезе. Литий является промежуточным продуктом реакции ppII, но при высоких температурах активно преобразуется в два ядра гелия-4 (через 8Be).

В космосе

Аномально высокое содержание лития наблюдается в звёздных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау — Торна — Житкова.

Также имеется большое количество звёзд-гигантов с необычно высоким содержанием лития, что объясняется попаданием лития в атмосферу звёзд при поглощении ими экзопланет-гигантов.

Получение

Сырьё

Исходным сырьём для лития служат два источника: минеральное сырьё (например, сподумен) и солевые растворы из соляных озёр, богатые солями лития. В обоих случаях результатом работы является карбонат лития Li2CO3.

Сподумен (силикат лития и алюминия) можно перерабатывать несколькими способами. Например, спеканием с сульфатом калия получают растворимый сульфат лития, который осаждают из раствора содой:

L i 2 S O 4 + N a 2 C O 3 ⟶ L i 2 C O 3 ↓ + N a 2 S O 4 {\displaystyle \mathrm {Li_{2}SO_{4}+Na_{2}CO_{3}\longrightarrow Li_{2}CO_{3}\downarrow +\ Na_{2}SO_{4}} } .

Солевые растворы предварительно выпаривают. В солевых растворах содержится хлорид лития LiCl. Однако вместе с ним содержатся большие количества других хлоридов. Для увеличения концентрации лития из выпаренного раствора осаждают карбонат лития Li2CO3, например по схеме

2 L i C l + N a 2 C O 3 ⟶ L i 2 C O 3 ↓ + 2 N a C l {\displaystyle \mathrm {2\ LiCl+Na_{2}CO_{3}\longrightarrow Li_{2}CO_{3}\downarrow +\ 2\ NaCl} } . Получение металла

Металлический литий чаще всего получают электролизом расплава солей или восстановлением из оксида.

Электролиз

При электролизе используется хлорид лития. Его получают из карбоната по схеме:

L i 2 C O 3 + 2 H C l ⟶ 2 L i C l + H 2 O + C O 2 {\displaystyle \mathrm {Li_{2}CO_{3}+2\ HCl\ \longrightarrow \ 2\ LiCl+H_{2}O+CO_{2}} } .

Поскольку температура плавления хлорида лития близка к температуре кипения лития, применяют эвтектическую смесь с хлоридом калия или бария, что понижает температуру расплава и позволяет избавиться от необходимости улавливать пары металла. Расход электроэнергии до 14 кВт∙ч на 1 кг лития. На другом электроде получают газообразный хлор.

Восстановление

Поскольку литий — активный металл, его восстановление из оксидов или галогенидов возможно только при немедленном удалении лития из зоны реакции. В противном случае невозможно сместить баланс реакции в нужную сторону. Литий удаляют из зоны реакции путём поддержания температур, при которых литий испаряется и покидает зону реакции в виде паров. Другие реагенты при этом должны оставаться в расплаве. Для восстановления используются кремний или алюминий, например:

2 L i 2 O + S i ⟶ 4 L i + S i O 2 {\displaystyle \mathrm {2\ Li_{2}O+Si\longrightarrow \ 4\ Li\uparrow +SiO_{2}} } Рафинирование

Полученный литий очищают методом вакуумной дистилляции, последовательно выпаривая разные металлы из сплава при определённых температурах.

Добыча

В 2015 году в мире добыли 32,5 тыс. тонн лития и его соединений в пересчёте на металл. Крупнейшие страны по добыче — Австралия, Чили и Аргентина. В России собственная добыча лития была полностью утрачена после распада СССР, но в 2017 году Россия запустила экспериментальную установку, позволяющую добывать литий из бедных руд с небольшими затратами.

Большая часть добывается из естественных водных линз в толще соляных озёр, в насыщенных соляных растворах которых концентрируется хлорид лития. Раствор выкачивается и выпаривается на солнце, полученная смесь солей перерабатывается. Содержание лития в растворе колеблется от 0,01 % до 1 %. Также значительная доля добычи приходится на минеральное сырьё, например, минерал сподумен.

Применение

Оценка использования лития в мире в 2011 году: Керамика и стекло (29 %) Источники тока (27 %) Смазочные материалы (12 %) Непрерывная разливка стали (5 %) Регенерация кислорода (4 %) Полимеры (3 %) Металлургия алюминия (2 %) Фармацевтика (2 %) другое (16 %)

Термоэлектрические материалы

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530 мкВ/К).

Химические источники тока

Из лития изготовляют аноды химических источников тока (аккумуляторов, например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов.

Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития).

Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом).

Лазерные материалы

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски и для изготовления оптики с широкой спектральной полосой пропускания.

Окислители

Перхлорат лития используют в качестве окислителя.

Дефектоскопия

Сульфат лития используют в дефектоскопии.

Пиротехника

Нитрат лития используют в пиротехнике для окрашивания огней в красный цвет.

Сплавы

Сплавы лития с серебром и золотом, а также медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике (из-за их лёгкости). На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придаёт им пластичность и стойкость против коррозии.

Электроника

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике.
Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп.
Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Металлургия

В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Литий иногда применяется для восстановления методами металлотермии редких металлов.

Металлургия алюминия

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия, и его потребление растёт с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5—3,5 кг на тонну выплавляемого алюминия).

Легирование алюминия

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются.

Наиболее известны системы легирования Al-Mg-Li (пример — сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример — сплав 1460, применяемый для изготовления ёмкостей для сжиженных газов).

Ядерная энергетика

Изотопы 6Li и 7Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафниат лития входит в состав специальной эмали, предназначенной для захоронения высокоактивных ядерных отходов, содержащих плутоний.

Литий-6

Применяется в термоядерной энергетике.

При облучении нуклида 6Li тепловыми нейтронами получается радиоактивный тритий 3H:

3 6 Li + 0 1 n → 1 3 H + 2 4 He {\displaystyle {}_{3}^{6}{\textrm {Li}}+{}_{0}^{1}{\textrm {n}}\rightarrow {}_{1}^{3}{\textrm {H}}+{}_{2}^{4}{\textrm {He}}}

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7

Применяется в ядерных реакторах. Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов жидкий литий-7 (часто в виде сплава с натрием или цезием) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF2) носит название «флайб» (FLiBe) и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и для производства трития.

Соединения лития, обогащённые по изотопу лития-7, применяются на реакторах PWR для поддержания водно-химического режима, а также в деминерализаторе первого контура. Ежегодная потребность США оценивается в 200—300 кг, производством обладают лишь Россия и Китай.

Сушка газов

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина

Основная статья: Препараты лития

Соли лития обладают нормотимическими и другими лечебными свойствами. Поэтому они находят применение в медицине.

Смазочные материалы

Стеарат лития («литиевое мыло») используется в качестве загустителя для получения пастообразных высокотемпературных смазок машин и механизмов. См. напр.: Литол, ЦИАТИМ-201.

Регенерация кислорода в автономных аппаратах

Гидроксид лития LiOH, пероксид Li2O2 применяются для очистки воздуха от углекислого газа; при этом последнее соединение реагирует с выделением кислорода (например, 2Li2O2 + 2CO2 → 2Li2CO3 + O2), благодаря чему используется в изолирующих противогазах, в патронах для очистки воздуха на подлодках, на пилотируемых космических аппаратах и т. д.

Силикатная промышленность

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий.

Прочие области применения

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Весьма перспективно использовать литий в качестве наполнителя поплавка батискафов — этот металл имеет плотность, почти в два раза меньшую, чем вода (точнее, 534 кг/м³), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий — щелочной металл, активно реагирующий с водой, следует каким-то образом надёжно разделить эти вещества, не допустить их контакта.

Из лития изготавливают аноды химических источников тока (например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, Литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил). Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов. Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития). Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом). Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике. Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп. Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Биологическое значение лития

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 30 мая 2014 года.

Литий в небольших количествах необходим организму человека (порядка 100 мкг/день для взрослых). Преимущественно в организме находится в щитовидной железе, лимфоузлах, сердце, печени, лёгких, кишечнике, плазме крови, надпочечниках.

Литий принимает участие в важных процессах:

  • участвует в углеводном и жировом обменах;
  • поддерживает иммунную систему;
  • предупреждает возникновение аллергии;
  • снижает нервную возбудимость.

Препараты лития широко используются в терапии психических расстройств.

Выделяется литий преимущественно почками.

Цены

По состоянию на конец 2007 — начало 2008 года, цены на металлический литий (чистота 99 %) составляли 63—66 долларов за 1 кг.

  1. Указан диапазон значений атомной массы в связи с различной распространённостью изотопов в природе.

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — DOI:10.1351/PAC-REP-13-03-02.
  2. 1 2 Size of lithium in several environments. WebElements. Дата обращения 15 февраля 2014.
  3. atomic and ionic radius
  4. Литий // Химическая энциклопедия: в 5 т. / Кнунянц И. Л.. — М.: Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
  5. Книга рекордов Гиннесса для химических веществ
  6. Korber, N.; Jansen, M. Ionic Ozonides of Lithium and Sodium: Circumventive Synthesis by Cation Exchange in Liquid Ammonia and Complexation by Cryptands (англ.) // Chemische Berichte (англ.)русск. : journal. — 1996. — Vol. 129, no. 7. — P. 773—777. — DOI:10.1002/cber.19961290707.
  7. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  8. Lithium Article Eric Burns (недоступная ссылка). Дата обращения 12 октября 2012. Архивировано 18 мая 2013 года.
  9. Lithium Resources and Production: a critical global assessment // CSIRO, 2010
  10. Lithium // USGS
  11. 1 2 BD Fields The Primordial Lithium Problem, Annual Reviews of Nuclear and Particle Science 2011
  12. Постнов К.А. Лекции по общей астрофизике для физиков. Дата обращения 30 ноября 2013.; см Рис. 11.1
  13. http://www.int.washington.edu/PHYS554/2005/vanderplas.pdf
  14. Lecture 27: Stellar Nucleosynthesis Архивная копия от 28 мая 2015 на Wayback Machine // Университет Toledo — «The Destruction of Lithium in Young Convective Stars» slide 28
  15. Greg Ruchti, Lithium in the Cosmos — «Lithium is Fragile» slide 10
  16. Подтверждено существование сверхгиганта с нейтронной звездой внутри
  17. Астрофизики разгадали литиевую тайну
  18. Космос и жизнь. Литий
  19. Обзор рынка лития и его соединений в СНГ
  20. Получение металлического лития
  21. Литий: сверхвозможности суперметалла
  22. В России начата добыча лития и его соединений по разработанной дешевой технологии. НАУЧНАЯ РОССИЯ (11 мая 2017).
  23. USGS. Lithium (PDF). Дата обращения 3 ноября 2012.
  24. Managing Critical Isotopes: Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply, GAO-13-716 // U.S. Government Accountability Office, 19 September 2013; pdf
  25. PWR — литиевая угроза, ATOMINFO.RU (23 октября 2013). Дата обращения 29 декабря 2013.
  26. М. Н. Диомидов, А. Н. Дмитриев. Покорение глубин. — Ленинград: Судостроение, 1964. — С. 226—230. — 379 с.

Ссылки

В родственных проектах

  • Значения в Викисловаре
  • Медиафайлы на Викискладе
  • Литий на Webelements
  • Литий в Популярной библиотеке химических элементов

Литература

  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия. — М.-Л.: Химия, 1970. — 407 с.
  • Литий — статья из Большой советской энциклопедии.

Словари и энциклопедии

Нормативный контроль

BNE: XX531331 · BNF: 119338639 · GND: 4036037-4 · LCCN: sh85077577 · NDL: 00569575

Литий
Li
Атомный номер: 3
Атомная масса: 6,941
Темп. плавления: 453,85 К
Темп. кипения: 1615 К
Плотность: 0,534 г/см³
Электроотрицательность: 0,98

Натрий
Na
Атомный номер: 11
Атомная масса: 22,98976928
Темп. плавления: 371,15 К
Темп. кипения: 1156 К
Плотность: 0,97 г/см³
Электроотрицательность: 0,96

Калий
K
Атомный номер: 19
Атомная масса: 39,0983
Темп. плавления: 336,58 К
Темп. кипения: 1032 К
Плотность: 0,86 г/см³
Электроотрицательность: 0,82

Рубидий
Rb
Атомный номер: 37
Атомная масса: 85,4678
Темп. плавления: 312,79 К
Темп. кипения: 961 К
Плотность: 1,53 г/см³
Электроотрицательность: 0,82

Цезий
Cs
Атомный номер: 55
Атомная масса: 132,9054519
Темп. плавления: 301,59 К
Темп. кипения: 944 К
Плотность: 1,93 г/см³
Электроотрицательность: 0,79

Франций
Fr
Атомный номер: 87
Атомная масса: (223)
Темп. плавления: ~300 К
Темп. кипения: ~950 К
Плотность: 1,87 г/см³
Электроотрицательность: 0,7

Преимущества литиевых аккумуляторов хорошо известны. При равной номинальной емкости литиевая батарея весит в три раза меньше свинцово-кислотной и занимает в два раза меньше места. Заряжаемый током 0,5С литиевый АКБ выдерживает в 20 раз больше циклов чем свинцово-кислотный, поэтому с учетом срока службы он на сегодня самый дешевый и выгодный.

Характеристики литиевых аккумуляторов делают их идеальными источниками автономного питания на автомобилях с дополнительным бортовым оборудованием и на тех транспортных средствах где свободного места для установки массивной свинцово-кислотной аккумуляторной батареи недостаточно.

Количество циклов литиевого АКБ

Срок службы аккумулятора измеряют в циклах заряда – разряда. Аккумулятор считается непригодным для дальнейшего использования когда его емкость падает ниже 80% от первоначального номинального значения. Количество циклов можно рассматривать как способность ячеек сохранять и передавать энергию потребителям. Литиевые батареи обычно выдерживают не менее 1000 циклов.

Результаты испытаний нескольких аккумуляторов глубокого разряда разного типа. Специальное устройство разряжало четыре аккумулятора током 25 А до 10,5 вольт и затем заряжало их таким же током до 14,4 Вольт. В реальной жизни аккумуляторы часто подвергаются таким же нагрузкам. В испытаниях участвовали недорогой жидко-кислотный аккумулятор, две модели AGM и LiFePo4 аккумулятор. Аккумулятор с жидким электролитом вышел из строя после 18 циклов. AGM — после 180. Состояние литиевого аккумулятора не изменилось

Со временем ячейки стареют. Активные химические вещества в них разрушаются, емкость падает, а внутреннее сопротивление возрастает. На скорость старения влияют величина зарядного и разрядного тока, температура и глубина разряда. Устройством, продлевающим срок службы литиевого аккумулятора, является BMS. Хорошо продуманная электронная система управления контролирует состояние батареи, предотвращает ее перезарядку и защищает ячейки от повреждения при глубоком разряде

Зарядка LiFePO4 аккумулятора

Электрическую энергию можно «накачать» в аккумулятор быстро. Однако химические реакции не протекают мгновенно, поэтому состояние электролита между электродами окажется разным. Ближайшие к электродам слои «зарядятся», а расположенные дальше нет. Разница будет особенно заметна в ячейках с большой емкостью и объемом электролита.

Графики тока и напряжения во время зарядки LiFePO4 аккумулятора

Высокий зарядный ток не сильно ускоряет полную зарядку аккумулятора. Хотя заданное напряжение достигается быстрее, этап насыщения занимает больше времени. При высоком токе первая стадия оказывается короче, но зато вторая длиннее.

Максимально допустимый зарядный ток для аккумуляторов принято выражать в долях емкости. Например, если для литиевого аккумулятора емкостью 100 Ач указан ток 0,5C (где C — емкость аккумулятора), то его непрерывной ток зарядки не должен превышать 50 А. Как правило для литий-железо фосфатных (LiFePO4) аккумуляторов максимальный ток равен 0,5-1С

Повышенная температура сигнализирует о неправильном алгоритме зарядки или о внутренних проблемах аккумулятора

LiFePO4 аккумулятор в автомобиле

Литиевые аккумуляторные батареи чувствительны к величине тока и напряжения зарядки. Несоблюдение рекомендованных значений сокращает срок службы ячеек, уменьшает их емкость и может даже разрушить, причинив много дорогостоящих повреждений.

Источник зарядки аккумуляторов в автомобиле – это генератор двигателя. Стандартный регулятор автомобильного генератора настроен на 14,0-14,4 Вольта, что позволяет быстро заряжать стартовый аккумулятор и защищает его от сульфатации. Небольшой перезаряд для свинцово-кислотного аккумулятора не страшен, поэтому напряжение остается постоянным в течении всего времени работы двигателя.

Реле развязки соединяет стартовый и сервисный аккумуляторы. Но оно не обеспечивает литиевый аккумулятор правильным зарядным напряжением и не защищает его от высокого тока. Реле не увеличивает напряжение, если оно слишком низкое и не уменьшает его до безопасного уровня, когда оно слишком высокое. Полностью заряженный литиевый аккумулятор остается под тем же напряжением как и во время зарядки. Реле не ограничивает ток генератора, поэтому ток получаемый аккумулятором может в несколько раз превзойти безопасный уровень, определенный производителем. При такой схеме подключения литиевый аккумулятор заряжается неправильно и подвергается опасности во время эксплуатации

14,4 Вольта подходит и для заряда LiFePO4 аккумуляторов. Но заряженный на 100% литиевый аккумулятор не должен постоянно находится под таким напряжением. Оно опасно для батареи и может повредить ее во время продолжительной поездки.

Несовместимость между зарядным напряжением и требованиями LiFePO4 аккумулятора возрастает еще сильнее на автомобилях с двигателями Euro 5/6+. Напряжение на «интеллектуальном» генераторе во время движения колеблется от 12 до 16 Вольт, а значит прежде чем заряжать LiFePO4 аккумулятор напряжение нужно как-то выровнять. Необходимо промежуточное устройство, связывающее BMS аккумулятора с системой зарядки автомобиля.

Зарядное устройство устраняет недостатки реле. Ток, получаемый аккумулятором, ограничен номиналом устройства. Напряжение завит от состояния аккумулятора и изменяется по заданному алгоритму. Сначала зарядка аккумулятора идет максимальным током до 14,4 Вольт. После того как аккумулятор полностью зарядится напряжение уменьшается до 13,8 Вольт.

Задача буферного устройства обеспечить литиевый АКБ правильными профилями напряжения и тока. BMS же позаботится о безопасности ячеек и предотвратит неисправности, которые могут возникнуть. Промежуточное устройство – это управляемый микропроцессором DC-DC конвертер. Он поддерживает на выходе заданное стабильное напряжение и при слишком высоком, и при слишком низком напряжении генератора. Конвертер не только заряжает LiFePO4 аккумулятор по правильному алгоритму, но и ограничивает ток, не давая мощному автомобильному генератору повредить аккумуляторную батарею.

Модель BBW1212 BB1230 BB1260
Максимальный ток, А 28 30 60
Входное напряжение, В 12 12 12
Выходное напряжение, В 12 12 12
Тип аккумуляторов LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 6 режимов зарядки LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 9 режимов зарядки LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 9 режимов зарядки
Вес, кг 3,5 1,2 1,4
Размеры, мм 190 х 160 х 50 190 х 160 х 50 190 х 160 х 70
ЗАКАЗАТЬ ЗАКАЗАТЬ ЗАКАЗАТЬ

Как выбрать литиевый АКБ в автомобиль

Чтобы полностью использовать в автомобиле возможности LiFePO4 аккумулятора, нужно хорошо понимать как он будет эксплуатироваться и с какой нагрузкой ему предстоит работать. При создании электрической системы, работающей от дополнительного аккумулятора необходимо обращать внимание на следующее

Аккумуляторная батарея большей емкости работает дольше, а время ее зарядки меньше. C DC-DС зарядным устройством переносной бензиновый генератор становится не нужен. Ведь под капотом уже имеется автомобильный генератор мощностью 1500-3000 Вт. Все что необходимо – это организовать доступ к такому мощному источнику энергии. Правильно подобранное зарядное устройство не только передает сервисным аккумуляторам большую мощность, но и представляет доступ к энергии генератора вспомогательным устройствам, например инвертору. Пусть в автомобиле установлен дополнительный литиевый аккумулятор емкостью 100 Ач, DC-DС зарядное устройство номиналом 30А и инвертор мощностью 2000 Вт. Суммарная мощность устройств переменного тока, подключенных к инвертору, 1,5 кВт. Когда все они работают одновременно, инвертор потребляет 150 А, и заряда аккумулятора хватает на 45 минут. Если завести двигатель, то через зарядное устройство от генератора потребителям поступит 25 А, а 125 А отдаст в цепь аккумулятор. В результате аккумуляторная батарея разрядится за 48 минут. Предположим зарядное устройство на 30А заменили максимально допустимой для этого аккумулятора моделью на 60А. Если нагрузка не изменилась, то от генератора через зарядное устройство будет поступать уже 50 А, а 100 А предоставит аккумуляторная батарея. Время работы аккумуляторов увеличится до 60 мин. В дополнение к уже имеющемуся литиевому аккумулятору можно установить точно такой же второй, увеличив тем самым емкость батареи до 200 Ач. Большая емкость позволит использовать зарядное устройство номиналом 120 А. При такой установке 100 А поступит потребителям от генератора, а 50 А даст аккумуляторная батарея и время ее непрерывной работы возрастет до 4 часов

BMS, рассчитанная на высокий ток. Непрерывный ток разряда и заряда аккумулятора должен быть 0,5 — 1C . Необходимо смотреть именно на непрерывный, а не максимальный рейтинг аккумулятора. Максимальное значение бессмысленно, если не указывается время в течении которого проводилось испытание. Хорошая BMS должна отключать аккумулятор при перегрузке, перезарядке, перегреве и слишком высоком напряжении. Для аккумулятора это жизненно важно

Стоимость. Один литиевый аккумулятор может быть почти в два раза дороже другого. Если это так, то очевидно, что в технологии изготовления и в способах использования аккумуляторов существуют различия. Однако нет смысла устанавливать дорогую модель, если более дешевая справится со своими задачами. Важно понять, что для вашей системы имеет решающее значение.

Максимальная скорость зарядки — одна из важных характеристик литиевого аккумулятора. У дешевых моделей ток зарядки может составлять всего 0,3C (30 А для аккумулятора емкостью 100 Aч). У дорогих — 1С или 100 А для аккумулятора той же емкости. Если необходимо максимально быстро заряжать единственный аккумулятор, потребуется модель рассчитанная на высокий ток. Но если в автомобиле есть место, то два менее дорогих аккумулятора так же дадут возможность использовать ток силой 100 А, скорость зарядки снизится, но зато емкость батареи увеличится до 200 Ач.

На автомобиле может быть установлено две сервисных аккумуляторных батареи, одна 12, а другая 24-вольтовая. Для их зарядки потребуется два устройства: 12-12 и 12-24 с суммарным номиналом не превышающим возможности генератора. В противном случае для эффективной работы у генератора не останется избыточной мощности. Это не создаст технических проблем, но расчеты придется скорректировать соответствующим образом

Время работы аккумулятора без подзарядки. В отличии от свинцово-кислотного у литиевого аккумулятора доступно 100% емкости. Параллельно можно соединять любое количество аккумуляторов. При последовательном соединении менее дорогие модели часто имеют ограничение в 48 В

Мощность получаемая от генератора. Эта характеристика влияет как на емкость литиевой батареи, так и на выбор зарядного устройства. Современные автомобильные генераторы имеют мощность около 2000 Вт. Если в автомобиле есть место только для одного дополнительного аккумулятора емкостью 100 Ач, то для его зарядки подойдет устройство номиналом 30 А. С его помощью генератор сможет заряжать дополнительный аккумулятор током примерно 25 А и будет передавать аккумуляторам 350 Вт. Модель, номиналом 60 А, увеличит передаваемую мощность до 800 Вт. Для аккумулятора емкостью 100 Ач с максимальным током 0,5С этого окажется достаточно

Использовать в автомобиле дорогой LiFePO4 аккумулятор выгодно, когда все три параметра — мощность генератора, номинал зарядного устройства и допустимый ток зарядки аккумуляторов соответствуют друг другу. Например, если мощность автомобильного генератора 1400 Вт, а номинал зарядного устройства 120 А, то для аккумуляторной батареи емкостью 100 Ач с рейтингом 0,5С зарядный ток окажется недопустимо высоким. Но для аккумулятора с рейтингом 1С выбранное оборудование вполне подойдет.

Установка литиевого аккумулятора

Таблица значений длительно допустимого постоянного тока в зависимости от сечения медного кабеля при напряжении 12 Вольт и температуре 60 С

Перед установкой аккумулятора необходимо убедится, что выбранные зарядные профили и разрядный ток соответствуют его характеристикам. Если это не так, BMS просто отключит аккумулятор из соображений безопасности. Если литиевый АКБ планируется заряжать от автомобильного генератора, особенно на автомобилях EURO 6, необходимо использовать специальное зарядное устройство.

Вместо корпуса автомобиля в качестве отрицательного проводника, лучше использовать кабель, идущий от отрицательной клеммы сервисного к отрицательной клемме стартового аккумулятора.

Все кабели, подключенные к литиевой батарее, необходимо защищать предохранителями, установленными как можно ближе к аккумуляторной клемме. Номинал предохранителя должен на 30% превосходить максимально ожидаемый в цепи ток. Например, если к литиевому аккумулятору емкостью 100Ач подключено зарядное устройство на 60 А, то на входе и выходе устройства ставят предохранители по 80А

Задайте вопрос,

и получите консультацию по электрооборудованию для катера, яхты, автодома или кемпера

Аккумулятор или сокращённо (АКБ), очень важная деталь в любом автомобиле. Нет ни одной машины с двигателем внутреннего сгорания, где бы его не было.

Он отвечает за всё электрооборудование машины и без него она просто мертва. Далее рассмотрим, что же это такое и из чего он состоит.

Что такое АКБ для автомобиля, предназначение

То, что аккумулятор отвечает за всё электрооборудование в машине, было указано выше, но тут не всё так просто и однозначно. Главная задача батареи обеспечить запуск силового агрегата.

Когда двигатель запущен вся бортовая сеть запитывается от генератора. В середине 20-го века и даже ближе к его концу были двигатели внутреннего сгорания без аккумуляторов, например, моторы мотоциклов. В них запуск осуществлялся за счёт мускульной силы, а дальше все системы работали уже от генератора.

Однако в последнее время, с насыщением автомобилей различными электроприборами, мультимедийными центрами или климатическими системами, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка идёт от АКБ.

Но вернёмся к основному предназначению батареи. Как бы там не было главная задача по-прежнему остаётся это обеспечение электроэнергией стартера двигателя.

Что делать если при зарядке аккумулятор начинает кипеть?

При запуске, особенно в холодное время года, батарея серьёзно разряжается. Однако генератор кроме питания электроэнергией бортовой сети машины ещё и обеспечивает зарядку батареи.

Поэтому если генератор вышел из строя, то АКБ очень быстро разряжается. Новой заряженной батареи хватает не более чем на 100 км пробега. Во всех остальных случаях машина с неисправным генератором пройдёт ещё меньше.

Из чего сделан и что внутри аккумулятора

Не смотря, на весь технический прогресс, до сих пор, в автомобилях, используются аккумуляторные батареи, изобретённые в середине 19-го века.

Изобретателем АКБ считается Гастон Планте, которые изобрёл его в 1860 году. Ну а современный вид батареи приобрели в 1878 году, после того как его усовершенствовал Камилл Фор.

С этого времени батареи принципиально не менялись, все изменения были только косметическими, касающиеся их внешнего вида и качества изготовления элементов конструкции.

Данные аккумуляторы называются свинцово-кислотными, и в названии заключается описание принципа действия этих устройств.

Рисунок 19 века, на котором показан один из первых аккумуляторов в разрезе.

Итак, аккумулятор состоит из следующих основных частей:

  • Корпуса;
  • Крышки;
  • Отрицательных электродов;
  • Положительных электродов;
  • Положительной клемы;
  • Отрицательной клемы;
  • Соединительных перемычек;
  • Заливных пробок;
  • Электролита

Далее рассмотрим каждый элемент конструкции.

Итак, корпус и крышка батареи состоит из нейтрального к кислоте пластика.

Отрицательные пластины, впрочем, как и положительные состоят из металлического свинца и выполнены в виде решётки.

В отрицательной пластине, промежутки свинцовой решётки заполнены металлическим свинцом, в виде спрессованного порошка. В положительной – спрессованным порошком диоксида свинца (PbO2).

В промежутке между пластинами располагаются сепараторы, которые представляют собой микропористые пластины, сделанные из эбонита или ревертекса. Оба материала можно считать неким вариантом резины, и делаются они из каучука.

Задача сепараторов заключается в том, чтобы разделять положительные и отрицательные электроды и препятствовать их короткому замыканию, которое может произойти в результате вибраций двигателя и всего автомобиля.

Обе клеммы сделаны из металлического свинца и через них происходит подсоединение батареи к бортовой сети машины.

Что делать если разрядился аккумулятор в машине — проверенные способы как вернуть жизнь АКБ

Соединительные перемычки, так же выполнены из свинца и служат для объединения разных банок в единую батарею.

Для чего нужна заливная пробка, легко догадаться из названия этой детали. Она служит для заливки электролита в банки АКБ.

Ну и последняя в списке, но при этом одна из самых главных деталей аккумулятора является электролит. Он состоит из 30 % раствора серной кислоты (H2SO4) и дистиллированной воды.

Принцип работы АКБ

Принцип работы аккумулятора основан на электрохимической реакции окисления свинца в растворе серной кислоты и воды.

При разрядке батареи на положительной пластине происходит окисление металлического свинца, при этом на отрицательной пластине восстанавливается уже диоксид свинца.

При зарядке происходит обратный процесс, количество диоксида свинца на отрицательной пластине уменьшается, а на положительной пластине увеличивается количество металла.

Так же при разрядке АКБ уменьшается количество серной кислоты в электролите и увеличивается количество воды. При зарядке так же происходит обратный процесс.

Особенности конструкции современных АКБ

Не смотря на то что, принципиально, аккумуляторы, за более чем 150 лет, не изменились, современность внесла серьёзные изменения в технологию их изготовления и в материалы, из которых они делаются.

Рассмотрим их по отдельности:

  • Пластины

Сегодня на наиболее качественных батареях небольшие изменения претерпел материал пластин. Теперь пластины делают не из чистого свинца, а из его сплава с серебром. При этом появилась возможность снизить массу батареи на треть, а срок её службы увеличить на 20 %.

Кроме этого, изменилась сама технология их изготовления. Если первые пластины производились путём их литья, то сегодня их делают из тонкого свинцового листа, путём штамповки. Такой метод дешевле и при этом пластины получаются прочнее и тоньше.

  • Сепараторы

Одной из причин выхода АКБ из строя является короткое замыкание положительных и отрицательных пластин.

Замыкание происходит из-за того, что из пластин осыпается активная зона и внизу банок она замыкает. Во избежание этого сепараторы делают в виде конвертов, запаянных снизу, под пластинами. Таким образом, когда активная зона осыпается она остаётся внутри конверта и не замыкает.

В материал же самих сепараторов сегодня добавляется стекловолокно. Это так же позволяет делать их тоньше и прочнее.

  • Электролит

Как было указано выше, электролит представляет собой раствор серной кислоты и воды. Под действием низких температур, как известно вода замерзает, однако с электролитом этого не происходит.

Но он всё равно заметно загустевает и теряет свои свойства, из-за чего ёмкость батареи заметно снижается. Что бы избежать этого, сегодня, в электролит добавляют разнообразные присадки.

  • Гелевые электролиты

Аккумуляторы с гелиевыми электролитами можно считать вершиной эволюции кислотных батарей и именно поэтому для них, отведен отдельный раздел. Такие АКБ называются попросту, гелевыми. В этих устройствах электролит модифицирован настолько, что представляет собой нечто наподобие желе.

Такая модификация, в комплексе с другими вышеописанными инновациями дала поистине волшебные результаты. Батареи стали практически вечными, невосприимчивыми к переворачиванию, практически не теряющими свои свойства зимой и при этом на много легче по массе.

Как правильно менять Антифриз в машине

Правда цена по сравнению с аккумуляторами старого поколения возросла от 5 до 10 раз. Но это того стоит. И всё равно стоят они не запредельные деньги, где-то в пределах 100 – 200 условных единиц.

Параметры и характеристики аккумуляторной батареи

Параметры и характеристики аккумуляторов зашифрованы в их маркировке и сейчас мы разберём, что она обозначает.

Этот вопрос мы рассмотрим на примере самой распространённой АКБ 6СТ-55.

Итак, в названии аккумулятора, цифра 6 обозначает, что АКБ состоит из 6-и банок.

  • СТ – обозначает что батарея стартерная.
  • 55 – обозначает ёмкость батареи, которая составляет 55 Ампер*час.

Для того что бы понимать какой аккумулятор вам нужен, необходимо знать два параметра:

  • Тип ДВС;
  • Объём двигателя вашей машины;

Далее рассмотрим для каких двигателей, какие аккумуляторы подходят. Это таблица для бензиновых моторов:

  • Двигатели объёмом до 1,6 литра. Для них подходят АКБ 6СТ-45;
  • Двигатели объёмом от 1,6 до 2,5 литров. Для них подходит 6СТ-55;
  • Двигатели объёмом от 2,5 до 3 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 3 до 3,5 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом более 3,5 литров. Для них подходит 6СТ-90.

Для дизельных силовых агрегатов эти параметры несколько иные:

  • Двигатели объёмом до 1,5 литра. Для них подходит 6СТ-55;
  • Двигатели объёмом от 1,5 до 2,0 литров. Для них подходит 6СТ-60;
  • Двигатели объёмом от 2-х до 2,7 литров. Для них подходит 6СТ-75;
  • Двигатели объёмом от 2,7 до 3,5 литров. Для них подходит 6СТ-90;
  • Двигатели объёмом от 3,5 до 6,5 литров. Для них подходит 6СТ-132;
  • Двигатели объёмом более 6,5 литров. Для них подходит 6СТ-192 и больше.

Как можно увидеть, из-за разных принципов работы дизельных и бензиновых двигателей для них используются аккумуляторы разной ёмкости.

Для дизельных силовых агрегатов вам потребуются более ёмкие батареи.

Аккумуляторы будущего

Как уже упоминалось выше современные батареи по принципу действия точно такие же, как те, что были разработаны в середине 19-го века.

Однако технологии не стоят на месте и, судя по всему, в самое ближайшее время для двигателей внутреннего сгорания (ДВС) появятся АКБ, созданные на новых принципах. Далее они будут бегло перечислены.

  • Гелевые аккумуляторы

Об этих батареях достаточно подробно было рассказано выше. Эти батареи уже продаются, и их любой может купить.

Гелевая АКБ

  • Литий-ионные аккумуляторы

Эти батареи широко известны по мобильным телефонам и иным гаджетам. Однако, сегодня, существуют разработки и для автомобилей. Но, не смотря на все свои достоинства, в автотехнике данный вид АКБ не прижился из-за ряда принципиальных недостатков.

  • Во-первых, они резко теряют свою мощность из-за низкой температуры.
  • Во-вторых, для зарядки таких батарей требуется строгое соответствие зарядному току, что требует переделки электронной части генераторов.
  • Ну и самое главное, данные АКБ имеют стоимость в 15 раз дороже обычного кислотного аккумулятора.

Литий-ионная АКБ, чешской компании Варта

  • Графен-полимерные аккумуляторы

Это, пожалуй, самые перспективные батареи для использования, как в автомобилях, оснащённых ДВС, так и электрической силовой установкой. В производстве этих АКБ использованы нанотехнологии.

Эти аккумуляторы имеют поистине чудесные свойства. Они имеют ёмкость, практически в три раза больше литий-ионных и при этом на много меньшую стоимость, так как в их производстве не используется дорогостоящий литий. Кроме этого они не теряют своих свойств под действием низких температур.

Опытная графен-полимерная АКБ

Резюме: Выше перечислены только три самых раскрученных или правильней будет сказать, распиаренные технологии.

В мире ведутся работы над батареями, известно что в разработке более тридцати новых схем. Не исключено, что среди этих ещё испытывающихся аккумуляторов могут оказаться некоторые с ещё более интересными свойствами. Как говорится поживем — увидим.

Фотография поверхности анода литий-воздушной батареи, покрытого защитным слоем

M. Asadi et al./ Nature, 2018

Американские химики впервые создали эффективный литий-воздушный аккумулятор, который выдерживает 700 циклов зарядки—разрядки, что сравнимо с показателями современных литий-ионных аккумуляторов, которые работают без значительного снижения емкости от 400 до 1200 циклов. Этого удалось добиться благодаря использованию защитного покрытия на литиевом аноде, а также специально подобранных составов катода и электролита в электрохимической ячейке, пишут ученые в Nature.

Для повышения эффективности работы аккумуляторов ученые пытаются не только улучшать существующие схемы электрохимических ячеек за счет модификации состава и структуры электродов или электролита, но и ищут другие более выгодные окислительно-восстановительные реакции, которые происходят при зарядке и разрядке аккумулятора. Одним из наиболее перспективных вариантов замены наиболее популярным сейчас литий-ионным батареям считаются литий-воздушные химические источники тока. Эти батареи основаны на реакции лития с кислородом с образованием пероксида лития Li2O2, и по теоретическим оценкам обладают максимальной из известных батарей удельной энергией — около 40 мегаджоулей на килограмм, что примерно в 5 раз больше, чем у современных литий-ионных аккумуляторов.

Основная проблема литий-воздушных батарей — затрудненная работа в условиях химического состава воздуха. Эффективные литий-кислородные батареи с использованием чистого кислорода уже удавалось получить, однако они не могут применяться на практике и обладают повышенной взрывоопасностью. В случае же присутствия в газовой среде азота, углекислого газа и воды продукты побочных реакций загрязняют поверхность электродов и заметно снижают время работы аккумулятора, и уже после 10—20 циклов зарядки—разрядки батарея перестает работать.

Для решения этой проблемы группа американских электрохимиков под руководством Амина Салехи-Ходжина (Amin Salehi-Khojin) из Иллинойсского университета в Чикаго предложила новую схему литий-воздушной электрохимической ячейки, которая позволяет ограничить интенсивность побочных реакций на электродах и повысить таким образом время эффективной циклической работы аккумулятора. Для этого ученые использовали два подхода. Во-первых, на поверхность литиевого анода батареи было нанесено покрытие на основе углерода и карбоната лития. Сквозь такой слой проходят только ионы лития, таким образом сам анод оказывается защищен от влияния атмосферы. Во-вторых, в качестве катода было предложено использовать наноструктурированный дисульфид молибдена, который служит катализатором реакции восстановления кислорода. Электролитом же в предложенной архитектуре электрохимической ячейки служила смесь диметилсульфоксида с ионной жидкостью на основе тетрафторбората (EMIM-BF4).

Для проверки циклической работы предложенной схемы аккумулятора исследователи провели эксперимент по многократной перезарядке с использованием модельной газовой смеси, состав которой соответствовал составу воздуха. Кроме электрохимических измерений, для исследования процессов химической пассивации электродов авторы работы с помощью микроскопии и нескольких спектрометрических методов также определяли их структуру и химический состав после каждых 5 циклов.

Микрофотографии поверхности катода после первой и 250-й разрядки (a и с), после первой и 250-й зарядки (b и d). Справа приведена фотография разряженного катода, полученная с помощью просвечивающей электронной микроскопии

M. Asadi et al./ Nature, 2018

Поделиться Оказалось, что составленная таким образом литий-воздушная батарея выдерживает не менее 700 циклов перезарядки без заметного падения емкости, химический состав электродов при этом практически не изменяется. По словам авторов работы, после каждого из циклов зарядки-разрядки аккумулятора задействованным остаются примерно 99,97 процента лития.

Эффективность работы предложенной схемы аккумулятора ученые также подтвердили с помощью численных расчетов методом теории функционала плотности, изучив процесс катализа реакции восстановления кислорода на краях наночастиц дисульфида молибдена, а также вероятность взаимодействия воды и углекислого газа с образующимся в ячейке пероксидом лития.

Ученые утверждают, что это фактически первый эффективно работающий прототип литий-воздушного аккумулятора, который способен на такую долгую циклическую работу. Поэтому предложенная архитектура электрохимической ячейки, по мнению авторов работы, — очень важный шаг на пути к созданию литиевых источников тока нового поколения со значительно более высокими, чем у нынешних аккумуляторов, показателями удельной плотности энергии.

Если литий-воздушные батареи — пока только возможное будущее электрохимических источников тока, то наиболее популярные из современных аккумуляторов — литий-ионные батареи. Для повышения их эффективности, безопасности и расширения диапазона условий надежной работы ученые постоянно ищут новые материалы для электродов и электролитов. Например, недавно ученым впервые удалось создать литий-ионный аккумулятор, который работает при −70 градусах Цельсия. Другая группа исследователей нашла способ получать эффективные растягиваемые батареи. А до этого для повышения безопасности в литий-ионные аккумуляторы встроили мембрану с функциями огнетушителя.

Александр Дубов

Литий-воздушные батареи – будущее электроэнергетики

Литий-воздушные батареи становятся основной альтернативой литий-ионных аккумуляторов, которые, как ожидается, не смогут удовлетворить огромный спрос на энергию в ближайшие десятилетия, — пишет eurekalert.org.

Предполагается, что к 2050 году электроэнергия будет составлять 50% мирового энергетики. Сегодня этот показатель составляет 18%. Но установленная мощность для производства возобновляемой энергии, как ожидается, увеличится в четыре раза. Для этого потребуются более эффективные, дешевые и экологически чистые батареи.

Одной из альтернатив, изучаемых сегодня во многих частях мира, является литий-воздушная батарея. Она была представлена на конференции FAPESP Week в Лондоне.

«Сегодня много говорят об электромобилях. Некоторые европейские страны также думают о запрете двигателей внутреннего сгорания. Кроме того, возобновляемым источникам, таким как солнечная энергия, нужны батареи для хранения того, что вырабатывается в течение дня под действием солнечной радиации», — сказал Рубенс Масиэль Филю — профессор Школы химического машиностроения Университета Кампинас (UNICAMP).

Литий-воздушная батарея, в настоящее время работающая только в лабораторных условиях, использует кислород окружающей среды в качестве реагента. Батарея накапливает дополнительную энергию в результате электрохимической реакции, которая приводит к образованию оксида лития.

«Это устойчивый способ хранения электрической энергии. Он может поддерживать множество циклов разрядки/зарядки и имеет большой потенциал для использования в транспорте: как в легких, так и в тяжелых транспортных средствах. Он также может работать в сетях распределения электроэнергии», — сказал Рубенс Масиэль Филю.

Однако превращение экспериментов в коммерчески жизнеспособные продукты включает в себя понимание основ электрохимических реакций, которые происходят в процессе.

«Это также требует разработки новых материалов, которые позволяют нам использовать желаемые реакции и сводить к минимуму нежелательные эффекты или избегать их», — сказал Масиэль. Далее он объяснил, что некоторые явления необходимо наблюдать в реальном времени: «Идея состоит в том, чтобы отслеживать реакции, которые происходят в динамических экспериментах, и различные химические вещества, которые образуются, даже если их существование временно. В противном случае некоторые этапы процесса теряются, и аккумулятор становится неэффективным с точки зрения времени работы и продолжительности зарядки».

Для проведения измерений исследователи используют Национальную лабораторию синхротронного света (LNLS) при Бразильском центре исследований света в области энергетики и материалов (CNPEM), расположенном в Кампинасе.

Другой проект, представленный на конференции, был посвящен серно-воздушным батареям. Несмотря на то, что они не столь эффективны, они недороги и накапливают энергию на долгое время. «Они могут хранить энергию до 24 часов при очень низких затратах. Их основными ингредиентами являются сера и каустическая сода, и они чрезвычайно недороги. Именно поэтому мы вкладываем в них средства», — сказал Найджел Брэндон — профессор Имперского колледжа.

Из-за характеристик серно-воздушные батареи можно использовать дома или на предприятии. Брэндон считает, однако, что их наибольший потенциал в применении в зарядных станциях для электромобилей, что станет гораздо более распространенным явлением из-за европейской цели сокращения выбросов углерода на 80% к 2050 году.

«Важно подчеркнуть тот факт, что различные аккумуляторные проекты не конкурируют друг с другом, а дополняют друг друга», — сказал Джефф Роджерс из лондонского Университета Брунел, фасилитатор сессии.

Солнце, водород и биотопливо

Более эффективные батареи особенно важны в сценарии, в котором ожидается увеличение использования солнечной энергии. Пиковая солнечная радиация в течение дня потребует эффективного хранения энергии, чтобы ее можно было использовать ночью.

Масиэль также рассказал о проекте в CINE по разработке более эффективных фотоэлектрических элементов, которые могут быть использованы в будущем для преобразования солнечной энергии в электричество, а также для получения химических продуктов или даже водорода из гидролиза воды.

Жидкий водород является очень эффективным топливом, но его производство влечет за собой высокие энергетические затраты. Это один из вариантов, рассматриваемых в Соединенном Королевстве, поскольку биотопливо там не столь жизнеспособно, как в Бразилии.

«Мы ищем новые бактериальные ферменты для окисления лигнина — ароматического полимера, который составляет более 25% клеточных стенок растений и является частью остатка производства биотоплива. Цель заключается в разработке новых продуктов, таких как биотопливо, новые пластмассы и химические продукты для промышленности», — сказал Тимоти Багг из Университета Уорика.

Тяговые аккумуляторы для электромобилей

Какие аккумуляторы используются в электромобилях (далее по тексту — EV, Electric Vehicle, электрическое транспортное средство)? Обычно в электрических траспортных средствах устанавливаются одновременно два аккумулятора:

  • стартерный, как в классических автомобилях; используется для освещения, подогрева и некоторых других целей;
  • тяговый — для питания электродвигателя; о них и пойдет речь в этой статье.

Ключевые функциональные отличия тягового аккумулятора от «стартерно-осветительно-зажигательного» состоят в том, что он предназначен для питания в течение продолжительного периода времени, а также способен выдержать большое количество циклов заряда-разряда. Батареи для электромобилей характеризуются относительно высоким отношением мощности к весу и энергетической плотностью (количеством энергии на единицу объёма); более легкие батареи уменьшают вес автомобиля и улучшают его работу. По сравнению с жидким топливом большинство современных тяговых аккумуляторов имеют значительно более низкую удельную энергию (количество энергии на единицу массы), что сильно влияет на запас хода электромобилей. Батарея составляет значительную стоимость электрического транспортного средства, что, в отличие от автомобилей на ископаемом топливе, сильно влияет на единицу запаса хода. С 2018 года несколько электромобилей с более чем 500 км запаса хода, таких как Tesla Model S, в большинстве стран можно считать скорее роскошью, нежели средством передвижения.

Вы можете посмотреть видео, в котором автор разбирает тяговую аккумуляторную батарею Tesla Model S:

С конца 1990-х годов прогресс в технологиях батарей обусловлен требованиями к портативной электронике, например портативным компьютерам и мобильным телефонам. Рынок электрических ТС воспользовался этими достижениями как в производительности, так и в плотности энергии. Батареи могут разряжаться и заряжаться каждый день. Примечательно, что из-за упавших расходов на аккумулятор стоимость электромобилей снизилась более чем на 35% с 2008 по 2014 год. Прогнозируемый рынок автомобильных тяговых батарей к 2020 году составляет более 37 миллиардов долларов. С точки зрения эксплуатационных расходов, цена на электроэнергию для передвижения EV представляет собой небольшую часть стоимости топлива для эквивалентных двигателей внутреннего сгорания, что отражает более высокую эффективность использования энергии . Стоимость замены батарей доминирует над эксплуатационными расходами.

Какие аккумуляторы используются в электромобилях

Свинцово-кислотный

Самые дешевые и в прошлом самые распространенные тяговые батареи. Существует два основных типа свинцово-кислотных аккумуляторов: автомобильные стартерные батареи и батареи глубокого цикла. Автомобильные генераторы предназначены для обеспечения высокой скорости зарядки стартерных батарей для быстрых зарядов, в то время как батареи с глубоким циклом, используемые для электрических транспортных средств, требуют различной многоступенчатой ​​зарядки. Ни одна свинцово-кислотная батарея не должна разряжаться ниже 50% ее емкости, так как это сокращает срок службы батареи. Такие батареи требуют обслуживания, конкретно — контроля уровня и качества электролита.

Традиционно большинство электромобилей использовали свинцово-кислотные батареи из-за их зрелой технологии, высокой доступности и низкой стоимости (исключение: некоторые ранние EV, такие как Detroit Electric , использовали никель-железную батарею). Аккумуляторные батареи с глубоким циклом дорогие и имеют более короткий срок службы, чем сам автомобиль, замена обычно требуется каждые 3 года.

Свинцово-кислотные батареи в EV являются значительной (25-50%) частью конечной массы транспортного средства. Как и все батареи, они имеют значительно меньшую удельную энергию, чем нефтяные топлива. Хотя разница не настолько экстремальна, как кажется на первый взгляд, из-за более легкого привода в EV. Эффективность (70-75%) и емкость для хранения кислотной батареи с глубоким циклом снижаются при более низких температурах, а отвод энергии для работы нагревательной катушки снижает эффективность и запас хода до 40%.

Зарядка и работа батарей обычно приводят к выбросу водорода, кислорода и серы , которые встречаются в природе и обычно безвредны, если они должным образом вентилируются. Ранние владельцы электромобилей с такими батареями обнаружили, что, если их не обеспечить нормальную вентиляцию, сразу после зарядки в салоне будет неприятный запах серы.

Свинцово-кислотные аккумуляторы приводили в действие такие ранние современные EV, как оригинальные версии General Motors EV1 и Toyota RAV4 EV.

Никель-металлгидридный

Никель-гидридные (NiMH) батареи сейчас считаются относительно зрелой технологией. Хотя они менее эффективны при зарядке и разрядке, чем свинцовая кислота, они имеют удельную энергию 30-80 Втч/кг, что намного выше, чем свинцово-кислотная. При правильном использовании никель-металлгидридные батареи могут иметь исключительно долгий срок службы, что было продемонстрировано при использовании в гибридных автомобилях и «выживших» EVM NiMH RAV4, которые по-прежнему хорошо работают после 100 000 миль (160 000 км) и более десяти лет службы. К недостатком можно причислить низкую эффективность, высокий уровень саморазряда и низкую производительность в холодную погоду.

Натрий никель-хлоридный

Еще их называют ZEBRA (Zeolite Battery Research Africa). Эти батареи используют в качестве электролита расплавленный хлоралюминат натрия (NaAlCl4). Эта химия также иногда упоминается как «горячая соль». Относительно зрелая технология, батарея Zebra имеет удельную энергию 120 Вт/кг и разумное последовательное сопротивление. Поскольку аккумулятор необходимо нагревать для использования, холодная погода не оказывает сильного влияния на его работу, за исключением увеличения расходов на отопление. Они использовались в нескольких EV. Зебры могут использоваться несколько тысяч циклов заряда и нетоксичны. Недостатки батареи Zebra включают плохое соотношение мощности к веу (<300 Вт/кг) и потребность в нагревании электролита до температуры около 270°C, которая отнимает часть энергии и создает трудности в долгосрочных испытаниях, долгосрочное хранение заряда.

Батареи Zebra использовались в коммерческом автомобиле Modec с момента его ввода в производство в 2006 году.

Литий-ионный

Литий-ионные (Li-ion и аналогичные литий-полимерные Li-pol) батареи, широко известные благодаря их использованию в ноутбуках, телефонах и другой электронике, доминируют в самой самом современном электромобилестроении. Эта технология позволяет создвать аккумуляторные ячейки с впечатляющей удельной энергией 200+ Втч/кг и хорошей удельной мощностью и эффективностью заряда/разряда от 80 до 90%. Недостатки традиционных литиево-ионных аккумуляторов включают короткие циклы (от нескольких сотен до нескольких тысяч циклов заряда) и значительную потерю емкости с возрастом. Катод также несколько токсичен. Кроме того, традиционные литиево-ионные аккумуляторы могут представлять угрозу пожарной безопасности, если они проколоты или заряжены ненадлежащим образом. Зрелость этой технологии умеренная. Tesla Roadster (2008) использует традиционные литий-ионные ячейки, используемые в ноутбуках, которые могут быть заменены по отдельности по мере необходимости.

Большинство других EV используют новые вариации на литий-ионную тему, которые приносят в жертву часть энергии и удельную мощность для обеспечения огнестойкости, экологичности, очень быстрых зарядов (всего несколько минут) и очень длинных сроков жизни. Было показано, что эти варианты (фосфаты, титанаты и т.д.) имеют гораздо более продолжительный срок службы.

Много работы и исследований проводится для совершенствования литий-ионных батарей в лабораториях. Оксид лития-ванадия уже используется в прототипе Subaru G4e, удваивая плотность энергии. На данный момент это самая перспективная технология аккумуляторов для электромобилей.

Стоимость батареи

С каждым годом производство аккумуляторов для электромобилей наращивается. Вследствие этого, а также развивающихся технологий стоимость кВт/ч обходится всё меньше и меньше. Согласно исследованию, опубликованному Bloomberg New Energy Finance (BNEF) в феврале 2016 года, цены на тяговые аккумуляторы упали на 65% с 2010 года, из них на 35% только в 2015 году, достигнув 350 долларов США за кВт/ч. В исследовании делается вывод о том, что стоимость батареи стоит на пути к тому, чтобы электромобили без государственных субсидий (существующих на данный момент в Европе и США) были такими же доступными, как автомобили с двигателями внутреннего сгорания к 2022 году.

Где и почем купить аккумуляторы в России

Большинство потенциальных покупателей подержанных электромобилей интересует вопрос: сколько стоит новый аккумулятор для электромобиля и где его можно купить? Это важно для того, чтобы понимать, стоит ли тратиться на машину с батареей с большей остаточной емкостью или лучше купить автомобиль постарше и купить новый аккумулятор. В настоящее время рынок электрокаров в РФ только зарождается и всех немногочисленных владельцев можно разделить на две категории: люди с высоким уровнем достатка, владеющие новенькими Теслами или BMW i8, и люди, пользующиеся подержанными электромобилями, ввезенными из Японии, США или Европы, для которых важна конечная стоимость километра пробега на электромобиле. Первые могут обратиться к дилеру, у которого они приобрели машину, но с учетом характеристик современных батарей, делать это понадобится не скоро. А вторым нужно выбрать: эксплуатировать автомобиль с меньшим запасом хода или раскошелиться на новую или мало б/у батарею. Самое популярное решение для японских электромобилей — купить или заказать батарею на Дельнем Востоке. Для примера приведу текущую стоимость б/у аккумуляторов. Батарея 24 кВт/ч на Nissan Leaf I с остаточной емкостью около 75% будет стоить около 110 тыс. рублей. Стоимость увеличенной батареи 30 кВт/ч с остаточной емкостью 95% может доходить до 300 с лишним тысяч рублей. Если вас интересует аккумулятор для автомобиля, произведенного в Европе или США, можно рассчитывать на примерно такое же соотношение стоимости к остаточной емкости. При этом если АКБ нужна, например, в Москве, то в расходы следует записать и стоимость доставки.

Долговечность батареи

Долговечность батареи на текущий момент с учетом постепенного падения остаточной емкости не ниже 70% составляет более 4 000 циклов зарядки-разрядки, то есть в среднем более 1 500 000 км и служит более 10 лет. Последнее позволяет утверждать, что сейчас главная претензия к тяговым батареям — их стоимость.

Как падает емкость аккумулятора

С годами и пройденными километрами емкость аккумуляторной батареи электромобиля падает. Все батареи в конечном итоге изнашиваются и должны быть заменены. Скорость, с которой они истекают, зависит от ряда факторов. Глубина разряда — это рекомендуемая минимальная доля общего объема накопленной энергии, для которой эта батарея будет достигать своих номинальных циклов. Аккумуляторные батареи с глубоким циклом обычно не должны разряжаться до менее чем 20% от общей емкости. Отдельные современные батареи могут выдержать более глубокие разряд. Литий-ионные батареи, используемые в большинстве современных электрокаров, теряют часть своей максимальной емкости в год, даже если они не используются, но имеют очень высокое циклическое сопротивление и выдерживают более 10 000 циклов заряда и разряда и длительный срок службы до 20 лет. Никель-металлгидридные батареи теряют гораздо меньшую емкость.

В США проводились тесты срока службы батареи Tesla Roadster (2008). Было обнаружено, что после 100 000 миль (160 000 км), батарея по-прежнему оставалась вместимостью от 80 до 85 процентов, причем независимо от того, в какой климатической зоне движется автомобиль. Родстер Tesla был построен и продан в период с 2008 по 2012 год. Для своих 85-кВт-ч аккумуляторов в Tesla Model S предусмотрена 8-летняя гарантия с неограниченным пробегом.

По состоянию на декабрь 2016 года самым продаваемым в мире электромобилем в мире является Nissan Leaf, с более чем 250 000 единиц, проданных с момента его создания в 2010 году. Nissan заявил в 2015 году, что за это время только 0,01% батарей пришлось заменить из-за сбоев или проблем. Есть множество EV транспортных средств, которые уже покрыли более 200 000 км; ни у одного из них не было никаких проблем с батареей.

Сколько нужно заряжать аккумулятор

Батареи электрических автомобилей, такие как Tesla Model S, Renault Zoe, BMW i3 и т.д., можно заряжать на быстрых зарядных станциях в течение 30 минут до 80 процентов. Зарядка от обычных 3 кВт розеток занимается в среднем 8 часов.

У исследователей из Сингапура в 2014 году был разработан аккумулятор, который можно заряжать за 2 минуты до 70 процентов. Батареи полагаются на литий-ионную технологию. Однако анод и отрицательный полюс в той батарее состоят не из графита, а их геля диоксида титана. Гель значительно ускоряет химическую реакцию, обеспечивая тем самым более быструю зарядку.

Запас хода

Запас хода EV зависит от количества и типа используемых батарей. Вес и тип транспортного средства, а также местность, погода и стиль вождения также оказывают влияние, как и на пробег традиционных автомобилей.

  • Свинцово-кислотные батареи являются наиболее доступными и недорогими. Они обычно имеют запас хода от 30 до 80 км.
  • NiMH батареи имеют более высокую удельную энергию, чем свинцово-кислотная; прототип EV обеспечивают до 200 км запаса хода.
  • Новые литиево-ионные аккумуляторы обеспечивают 320-480 км запаса хода на заряд. Литий также дешевле никеля.
  • Никель-цинковая батарея дешевле и легче никель-кадмиевых батарей. Они также дешевле, чем литий-ионные батареи.

Поиск экономического баланса между производительностью, емкостью аккумулятора и весом, а также типом батареи и ее стоимостью зависит и от каждого производителя электрокара.

При использовании системы переменного тока или системы постоянного постоянного тока рекуперативное торможение может продлевать запас до 50% при экстремальных условиях движения без полной остановки. В противном случае, запас хода увеличивается примерно на 10-15% при городском вождении и совсем не увеличивается на шоссе.

EV (включая автобусы и грузовики) могут использовать прицепы и прицепы-толкатели с батареями, чтобы продлить запас хода, если это необходимо, без дополнительного веса при нормальной эксплуатации на коротких расстояниях. Разряженные аккумуляторные прицепы могут быть заменены заряженными на маршруте.

Такие BEV могут стать гибридными автомобилями в зависимости от типа транспорта и типа автомобилей и трансмиссии.

  • Модель Tesla S с аккумулятором 85 кВтч имеет дальность хода 510 км.
  • Электрический автомобиль BYD e6 с батареей 60 кВтч имеет дальность около 300 км.
  • Бестселлер Nissan Leaf 2016 года с батареей емкостью 30 кВт/ч имеет запас хода 172 км.

Вы можете понять, как используются и располагаются АКБ в электрокаре по видео:

У автолюбителей, которые впервые столкнулись с электротранспортом, возникает немало вопросов по поводу таких батарей – о времени и способах зарядки, обслуживании, покупке и утилизации.

Не лишним будет перед покупкой такой машины узнать и о видах аккумуляторов, сроках службы и преимуществах их использования по сравнению с более привычным бензином и дизтопливом.

Виды аккумуляторов для электромобилей

В большинстве современных электрических машинах используются 4 типа аккумуляторных батарей. Самые распространённые – литий-ионные, алюминий-ионные и литий-серные. Иногда применяют ещё и металл-воздушные, где в качестве металла выступают цинк, литий, натрий, магний или алюминий.

Литий-ионные батареи

Литий-ионные АКБ – самый распространённый вариант для установки на электрических автомобилях. Преимуществами таких источников питания считают:

  • высокую плотность накапливаемой энергии;
  • более высокое по сравнению с другими видами АКБ напряжение;
  • небольшой саморазряд – до 6% в месяц, до 20% в год;
  • практически полное отсутствие «эффекта памяти», из-за которого новые батареи требуется «тренировать», используя несколько циклов заряда/разряда;
  • сравнительно большой срок эксплуатации – не меньше 1000 циклов или 10 лет.

Не лучшими характеристиками таких батарей можно назвать высокую стоимость, которая влияет и на цену автомобиля, и плохую устойчивость к избыточному заряду.

Минусом является и небольшой температурный диапазон, в котором работают литий-ионные АКБ (от –20 до +50°C). При использовании за пределами этих значений характеристики батареи ухудшаются – на холоде снижается ёмкость, при жаре аккумулятор может работать нестабильно.

Серьёзная проблема Li-Ion источника питания – высокий уровень взрывоопасности при повреждении и нарушении герметичности.
Алюминий-ионные аккумуляторы

Алюминий в составе батареи для электромобиля повышает безопасность её использования.

Кроме того, такой аккумулятор дешевле обходится при производстве. Использованию таких устройств мешает невысокая производительность катодов и меньшее количество циклов заряда/разряда.

В Китае ведутся исследования по поводу улучшения характеристик батарей. Уже разработана новая конструкция катода, увеличившая ёмкость и сроки службы литий-ионной АКБ, а также уменьшившая её цену. Новая версия, ещё не применяемая на серийных авто, выдерживает до 250 тыс. перезарядок.

Литий-серные батареи

Аккумуляторы, принцип действия которых основан на реакции между литием и серой, делаются многослойными. Их ёмкость примерно вдвое выше по сравнению с аналогичными по размеру литий-ионными батареями. Стоимость изготовления таких аккумуляторов ниже, а рабочий диапазон температур выше, чем у большинства других источников питания электромобилей.

Недостатком литий-сернистых АКБ является небольшое количество перезарядок (до 60). Это делает батареи непригодными для установки в серийных автомобилях. Однако над устранением недостатков уже работают специалисты нескольких компаний, включая OXIS Energy. Предполагается, что к 2020 году стоимость поездки на аккумуляторах Li-S будет ниже, чем у современных литий-ионных версий.

Металл-воздушные АКБ

Преимуществами металло-воздушных аккумуляторов являются:

  • небольшой вес, благодаря которому снижается и масса автомобиля;
  • большой пробег электромобилей, которые комплектуются такой батареей;
  • сравнительно доступная стоимость;
  • более простая утилизация по сравнению с литиевыми АКБ.

Минусами устройства является снижение производительности батареи при низкой температуре. Кроме того, такой батарее нужна система фильтрации, потребляющая почти треть общей мощности. Ещё один серьёзный минус – внезапный выход из строя металл-воздушных аккумуляторов из-за образовавшейся на их поверхности плёнки из пероксида лития. И, наконец, последний минус, из-за которого такие батареи не пользуются большим спросом – небольшое число циклов заряда/разряда – до 50-60.

Другие варианты

Кроме основных технологий производства аккумуляторов электромобилей, существует несколько видов, которые только находятся в разработке. Предполагается, что такие аккумуляторные батареи для электромобиля получат большую ёмкость и срок службы по сравнению с существующими версиями. Одной из таких разработок является аккумулятор на основе кремния и графита, способный накапливать в 5 раз больше энергии без заметного износа.

Южнокорейскими разработчиками создана технология, вообще не требующая зарядки. Вместо подключения к электросети после у электромобиля заменяется одна алюминиевая пластина, которой хватает на 700 км пробега. Алюминий идёт на переработку и используется повторно.

Ёмкость батареи электромобиля

Практически каждый электрический автомобиль использует свой тип батареи. Аккумуляторы отличаются ёмкостью и обеспечивают разный запас хода. И хотя максимальное расстояние, которое может проехать электромобиль, зависит ещё и от его конструкции и веса, эту цифру можно использовать для сравнения батарей.

Табл. 1. Сравнение аккумуляторов популярных электромобилей по ёмкости и запасу хода.

Ресурс аккумулятора

Ещё один важный вопрос, возникающий у покупателей и владельцев электрического транспорта, касается срока службы аккумулятора. Стоимость этого источника питания достаточно высокая, и, чем реже его придётся менять, тем лучше. Ответить на вопрос можно попробовать, используя уже известную информацию о батареях электромобилей:

  • средний срок эксплуатации аккумулятора составляет около 8-10 лет, хотя эти цифры пока не подтверждены из-за отсутствия достаточно количества старого электротранспорта;
  • производители дают гарантию на аккумулятор в пределах 5-8 лет, что позволяет владельцу электромобиля рассчитывать на его замену при преждевременном выходе из строя;
  • ёмкость большинства батарей постепенно снижается, и через несколько лет запас хода электромобиля окажется равным 70-80% от начального значения.

Характеристики некоторых видов аккумуляторов (например, литий-ионных) ухудшаются, независимо от количества циклов заряда/разряда. Срок службы других батарей зависит от условий использования, включая температуру окружающей среды. Ёмкость третьих АКБ становится меньше с каждым зарядом. Чтобы примерно представить снижение ресурса, следует рассмотреть конкретный электромобиль.

Ухудшение параметров в процессе эксплуатации

Наблюдения за аккумуляторными батареями популярных моделей Tesla Model S и Nissan Leaf показывают, что максимальное снижение ёмкости происходит в течение первых 5 лет. Причём, за первый и второй год мощность аккумулятора, а, значит, и запас хода уменьшаются в пределах 5-10%, а за три следующих года – ещё на 15-20%. После этого параметры АКБ остаются примерно на одном уровне до конца срока службы – ежегодное снижение ресурса не превышает 1-5%.

Такие особенности аккумуляторов электромобилей позволяют выпущенным больше 5 лет назад моделям Nissan Leaf проезжать до 130 км на одном заряде вместо 160 км начального ресурса. Первые Tesla Model S 2013 года до сих пор способны проехать не меньше 200 км – при 335 км в самом начале эксплуатации. Похожие результаты показывают модели других марок.

Сравнивая пробег электромобилей, можно получить примерно те же цифры – максимальное снижение ёмкости наблюдается в течение первых 70-80 тыс. км. Для обычного автовладельца, проезжающего не больше 15-20 тыс. км ежегодно, эти цифры будут примерно соответствовать 5 годам эксплуатации.

Срок службы батареи уменьшается, если автомобилист постоянно использует технологию быстрой зарядки. Заряжая аккумулятор с помощью устройств, которые восстанавливают до 80% заряда за 30-60 минут, можно в 1,5-2 раза ускорить процесс деградации источника питания. Для того чтобы батарея прослужила дольше, её рекомендуется оставлять подключенной к зарядному устройству на несколько часов – например, на ночь.

Замена аккумулятора

Вышедший из строя или использовавший большую часть своего ресурса аккумулятор следует заменить. И, если владельцы новых электромобилей практически не сталкиваются с необходимостью покупки новой батареи, покупателям первых электрических авто уже приходится задумываться об этом. При замене аккумулятора следует учитывать такие особенности:

  • аккумуляторы автомобилей одной модели не всегда подходят друг другу – подбирать АКБ придётся практически индивидуально;
  • после установки новой батареи требуется перепрограммирование электронных систем – «прописка» с помощью специальных программаторов;
  • если аккумулятор не полностью вышел из строя, а только повреждён, можно выполнить его ремонт – модульная конструкция батарей позволяет заменить всего несколько блоков.

Покупать аккумуляторные батареи можно у официальных дилеров или у частных лиц. В первом случае меньше риск купить подделку или некачественный товар, но увеличивается цена. Если нужно сэкономить, батарею покупают по объявлению, однако качество и надёжность такого аккумулятора остаются под вопросом.

Утилизация отработанных АКБ

Старые батареи содержат большое количество опасных для окружающей среды элементов, поэтому выбрасывать их как обычные отходы не рекомендуется. Обычно производители принимают подержанные аккумуляторы у покупателей своих электромобилей и занимаются утилизацией самостоятельно. Одним из самых выгодных способов утилизировать старых АКБ считается создание с их помощью систем автономного электропитания для частного жилья.

Батареи используют для накопления электроэнергии, полученной от установленных на крыше солнечных батарей. Заряд расходуется на работу домашней техники – телевизоров, холодильников, насосов системы отопления и водоснабжения. Такие варианты «второй жизни» для отработанных аккумуляторов уже разработаны компаниями Tesla и BMW.

Зарядка батареи

Разобравшись с видами, характеристиками и ресурсами аккумуляторов, стоит перейти к вопросу их зарядки. Большинство производителей рекомендует использовать зарядные станции, которые работают уже по всей Европе, в Соединённых Штатах и других странах, где официально продаются электромобили. С другой стороны, владельцу электрокара приходится рассчитывать, хватит ли ресурса аккумулятора не только для поездки, но и для посещения электрозаправки.

В домашних условиях большинство электромобилей можно заряжать от встроенных зарядных устройств, преобразующих переменный ток сети 220В в постоянный, подходящий для батареи. Для использования обычной электрической розетки следует использовать «зарядки» мощностью от 3,6 кВт. Для защиты от перегрева и короткого замыкания зарядное устройство комплектуется специальным блоком, контролирующим напряжение и температуру.

Время зарядки

Главным недостатком зарядки аккумуляторной батареи от обычной электросети является увеличивающееся время зарядки. Так, электромобили Tesla Model S с ёмкостью АКБ 70 кВт-ч заряжаются на 80-100% в течение 15-18 часов. На зарядку батареи Nissan Leaf уходит до 7-8 часов.

При использовании официальных зарядных станций владелец Tesla потратит не больше 5 часов, а, если автомобиль используется не меньше 2-3 лет, достаточно всего 3 часов. Для нового Nissan Leaf среднее время составит около 2,5 часов, для подержанного – до 1,5-2 ч. При использовании режима быстрой зарядки батарея «Ниссан Лиф» заряжается на 80% всего за полчаса, «Теслы» – в течение 40 минут.

Расходы на зарядку аккумулятора

Стоимость обслуживания электромобиля, в основном, связана с расходами на электричество. Для современных моделей Nissan Leaf на зарядку одного аккумулятора требуется не меньше 24 кВт-ч. С учётом запаса хода батареи около 160 км, получается, что на 100 км пробега уходит около 15 кВт-ч или сумма, сравнимая с ценой 1 литра бензина.

Расходы на использование других автомобилей могут заметно отличаться. Тем более что заряд уменьшается быстрее, если ехать на большой скорости (примерно вдвое, если сравнивать показатели для 70 км/ч и 140 км/ч). Однако в среднем затраты на зарядку аккумуляторов получаются в несколько раз ниже по сравнению с заправкой топливного бака обычного автомобиля.

Читайте самые интересные истории ЭлектроВестей в Telegram и Viber