Углепластик охлади свое

Москвич 2140 наверняка обнимет столб ›
Бортжурнал ›
«Она — со мной, углепластик. Так охладите тр**анье. Я рассматриваю ее пользу.»

присыраешь такой цуллер, не подключаешь, ибо лень, и ездишь, все норм, не греется, а потом попадаешь в пробку, оу шит.

А теперь про цуллер, с этой же штукой было то же самое что и с тахометром, хочу, и все. Потому на барахле была купленная какая то няша от автокондиционера на 80 ват, с обломанной на половину лопастью(на фото я уже подровнял лопасть напротив).

Чорненький, грязный, мееех, надо покрасить, в покрасочную камеру!

Ладно ладно, это пешеходный переход, в дождь, днем что то делать скучно и не интересно.

Красивенько, ану прикрутим.

ыыыы, как с завода.

Номер пришлось перевесить(ох прямо уж пришлось, дааа, вот просто не ехало без его перевешивания), хотелось видеть его не по центру, да и крепление слева отгнило, повесил опять на кучу хлама из мусорки.

Вот такие дела. Ну а на счет цуллера, то он работает, и даже хорошо, в пробке спокойно ничего не вылазит за 80, если включить вне пробки, то температура падает до 60, ну и заодно ему помогает 6 лопастной вентилятор на помпе.

Почему карбон не используется в массовом автопроме

Карбон – народное название, транслитерированное с английского слова carbon – уголь, которое в свою очередь было заимствовано еще из латыни. Углепластик представляет собой полимерный композиционный материал, состоящий из нитей углеродного волокна, переплетенных под определенным углом — как шерсть в свитере. Только очень прочный, с высокой степенью натяжения, низким весом и низким температурным расширением. Из-за его дороговизны композит может применяться как усиливающее дополнение, например, к стали — тогда материал получит приписку «усиленно углепластиком», CFRP.

Зона применения

Свою блистательную карьеру карбон начал с ракетных двигателей, а сегодня применяется в самых различных сферах — от производства удочек до самолетостроения. И в автопромышленности — не в последнюю очередь, прежде всего, в структуре кузова, а также элементах отделки экстерьера и интерьера.

Углепластик хорош тем, что обладает высокой прочностью, жесткостью и малой массой — он прочнее алюминия и легче стали, оказываясь более эффективным материалом. У кузова, изготовленного с применением композита, больше жесткость на кручение, что играет на руку безопасности автомобиля, и выше стойкость к коррозии. Даже применение части карбоновых деталей, даже только в отделке интерьера, снижает массу автомобиля, а значит, повышает топливную экономичность и динамические характеристики. При массовом применении повысилась бы и общая безопасность на дорогах при авариях, а также безопасность пешеходов.

Да и просто карбон считается красивым и стильным материалом — ведь спросом пользуется даже имитация «под карбон», которую с удовольствием используют в деталях и интерьере недешевых машин. Что уж говорить о пленке «под карбон», которая не добавляет кузову ни прочности, ни легковесности.

Однако из-за своей дороговизны углепластик далек от рынка массовых автомобилей и используется только в эксклюзивных дорогостоящих моделях, а также автоспорте. Но почему этот материал в прямом смысле «на вес золота»?

Дорогое производство

Окончательный ценник автомобиля в автосалоне складывается из сотни факторов: необходимость окупить затраты на создание идеи и разработку проекта, зарплаты дизайнеров и маркетологов, стоимость рекламы и имидж бренда. И мы можем только догадываться, насколько отличается себестоимость автомобиля от его покупательской цены.

Затраты на производство кузова с применением углепластика, его обработка и сборка мало чем отличаются от той же стали. Однако причина дороговизны композитной автомобильной детали объективна — дорог сам материал. Стоимость сырья составляет 20 долларов за килограмм, в то время как килограмм стали обойдется менее чем в один доллар.

Во-первых, из-за высокого спроса (например, из-за широкого применения в самолетостроении) на рынке наблюдается дефицит волокна, что также играет на его подорожание.

Во-вторых, сам процесс производства углеволокна очень трудоемкий и дорогостоящий. Итак, начинается все еще с нитей, из которых «вяжется» карбоновая пластина. Углеродные волокна получают за счет термической обработки химических и природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Сначала происходит окисление исходного волокна – на воздухе при температуре 250 градусов Цельсия в течение 24 часов, потом стадия карбонизации — нагрев волокна в среде азота или аргона при температуре от 800 до 1500 градусов Цельсия, а затем графитизация в инертной среде при температуре 1600-3000 градусов. В результате количество углерода в волокне доводится до 99%.

И на выходе одно только стартовое сырье становится в два раза дороже, чем исходный материал, так как половина элементов просто сгорает. Не считая расходов на специализированное оборудование и затрачиваемую энергию — представьте, сколько это стоит при обработке в перечисленных выше условиях и температурах, да и сами автоклавы (оборудование) значительно дороже. Более того, нужно избавиться от исключенных элементов, а утилизация этих «отходов производства», не вредящая окружающей среде, еще один важный пункт в счете расходов.

И это мы только сделали нити, а ведь из них еще надо «сплести полотно», которое и будет обладать той удивительной прочностью. И прежде всего, придется убедиться, что все нити одинаковы и равномерно растягиваются, иначе в полотне какие-то из них будут более уязвимы, а следовательно, сломаются. Так что необходимы сложные и дорогостоящие меры контроля качества изделий — в случае ошибки при производстве материал окажется хрупким, а не суперпрочным.

Затем нити работают с термоактивными смолами, которые их «склеивают», в результате и получается композит. Эти смолы также дороже обычных. А ведь композиту еще нужно придать форму, что занимает около часа — очень долго, если сравнивать с тем, как быстро штампуются кузовные панели из стали. Деталь из углепластика производится двумя способами. При прессовании углеткань выстилается в форму, смазанную антиадгезивом (например, мылом), пропитывается смолой, излишки смолы удаляются в ваккуме или под давлением, смола полимеризуется. Второй вариант — контактное формование: берется исходная деталь (например, металлический бампер), смазывается разделительным слоем, сверху напыляется монтажная пена. После затвердевания слепок смазывают разделительным слоем и выкладывают пропитанную углеткань, которая прокатывается, полимеризуется и затем снимается.

И наконец карбон, несмотря на свою прочность, уязвим для точечных ударов, а треснувший углепластик плохо пригоден к ремонту. Невидимые глазу внутренние трещины и расслоения приводят к снижению плотности. Скорее всего, поврежденную композитную деталь автомобиля придется заменять.

Вот что рассказал порталу «АвтоВзгляд» директор по послепродажному обслуживанию «Ауди Центр Восток» Алексей Кирдяшов:

— Высокая стоимость углепластика объясняется в первую очередь тем, что для изготовления карбона требуются высококачественные дорогостоящие компоненты и используется сложный процесс производства. На цену материала также влияют его уникальные характеристики — прочность и легкость. Это естественно, что за такое «ноу-хау» и эксклюзивные свойства продукта производители делают наценку, объясняя это тем, что карбон — будущее в автомобилестроении, авиастроении, изготовлении электроники, строительстве и многом другом. Продукт пользуется спросом, но еще не используется массово из-за своей стоимости…

Путь к удешевлению

Но коль дорого стоит производство, а не сам «алмаз», то его можно удешевить, упростив и удешевив технологию получения углеволокна. И, судя по последним заявлениям, производители композитов уже близки к этому. Ради совершенствования технологий производства карбона создан специальный немецкий проект MAI Carbon, на который работает более 70 компаний, институтов и лабораторий, в том числе Audi и BMW. И по словам его руководителя Клауса Дрекслера, затраты на производство углеволокна могут быть снижены на 90%. В результате композит может стать значительно дешевле, а значит, доступным для массового автомобильного производства. А при увеличении объемов производства кузова из углепластика станут стоить столько же, сколько стальные, и появятся у дешевых автомобилей.

По словам Дрекслера, для удешевления и ускорения производства нужно сделать процесс более автоматизированным. Подробностей участники проекта пока не раскрывают, однако в качестве реального примера можно вспомнить литиевые батареи, которые в последние годы удается делать все более доступными. Пассажирская клетка электрокара BMW i3 выполнена из композита, а ведь это уже массовая модель.

Например, технология струйного переноса сухой смолы, разработанная и запатентованная австралийской компанией Quickstep на средства правительства, уже позволяет автоматизировать изготовление кузовных панелей. Робот распыляет смолу особого состава в сухом виде, что позволяет избавиться от дорогостоящей подготовки жидкой смолы. Анализируется применение в качестве карбонового сырья лигнина, который получают из древесины и который по прочности на сжатие соответствует бетону, или подогрев при помощи плазмы. Ищут способы заставить углепластик работать с термопластиковыми смолами, что может удешевить производство на 60-70% и упростить устранение ошибок.

Похоже, революция на пороге.

10 знаковых карбоновых автомобилей, которые приближают будущее


Знаковые карбоновые авто, которые приближают будущее.

Первый карбоновый автомобиль был, мягко говоря, далек от идеала, ведь появился он в начале 1940-х. И многие десятилетия никто не мог поверить, что использование этого материала может стать не просто одним из конструкторских решений в автомобилестроении, определит будущее отрасли. В этом обзоре речь пойдёт о самых знаковых «пластиковых» автомобилях.

1. Soybean Car


Soybean Car — первый в мире карбоновый автомобиль.

Данный автомобиль можно считать первые карбоновым автомобилем в истории человечества. В качестве основного сырья использовалась соя. В действительности в Soybean Car было много металлических деталей, однако основа уже была карбоновой. Придумал эту штуковину сам Генри Форд. Решение было не креативным, а вынужденным. Машина появилась в 1941 году, когда весь металл шёл в первую очередь на производство военной техники.

2. Chevrolet Corvette (C1)


Chevrolet Corvette (C1) — первый настоящий пластиковый автомобиль.

Chevrolet Corvette (C1) — первый настоящий пластиковый автомобиль. Кузов этого авто был сделан из популярного тогда стекловолокна. Из металла был сделан только каркас. Машина получилась хорошая, но с конвейера смогли спустить только 300 единиц. Вышел образец к слову 1953 году.

3. ХАДИ-2


ХАДИ-2 — советский автомобиль из стеклопластика.

Экспериментировали со стеклопластиком и в СССР. Так в 1961-м студенты Харьковского автодорожного института создали первый экспериментальный образец авто. На тот момент это был настоящий прорыв, машина весила всего 500 килограмм. К сожалению так и осталась концептом.

4. Trabant


Немецкий автомобиль из стеклопластика.

Один из самых популярных и широко известных стеклопластиковых автомобилей. Производился достаточно долго для того, чтобы успеть стать легендой с 1957 по 1991 годы. Делали машинку в ГДР. Авто получилось очень хорошим, но все же над ним посмеивались, больше других даже сами немцы, которые часто шутили, что автомобиль хоть и сделан ими, сделан не для них.

5. Bayer K67


Автомобиль-легенда Bayer K67.

Еще одна настоящая легенда! Сей автомобиль есть плод сотрудничества немецких компаний Bayer и BMW. Показали машину с пластиковым кузовом в 1967 году. Немцы хотели похвастаться всему миру качеством своего карбона и смогли это сделать! На краш-тестах автомобиль показал себя намного лучше металлических собратьев, в том числе и при лобовом столкновении.

6. Urbee Hybrid


Urbee Hybrid — автомобиль будущего.

Концептуальный образец достойный внимания. Очень странный автомобиль, во всяком случае, по внешним параметрам. В тоже время, почти на 100% сделан из пластика. Кузов автомобиля также полностью пластиковый.

7. BMW i3


Серийный премиум-седан с электродвигателем и кузовом из пластика.

Первый серийный премиум-седан с электронным двигателем и кузовом из пластика. Хвастается главным образом тем, что невероятно устойчив к мелким повреждениям, хотя и тяжелые, опасные удары машина держит на ура. Такой машиной можно смело таранить и царапать всех, кто «криво» припарковался! Шутка.

8. Alfa Romeo 4C


Спорткар Alfa Romeo 4C.

Спорткары также все чаще используют карбоновые кузова. Вот этот красавец весит всего 895 килограмм, при этом кузов машины и вовсе весит смешные 64 кг. Производится это чудо конструкторской и дизайнерской мысли с 2013 года.

9. LEGO-мобиль


Такой необычный и странный легомобиль.

Не самый серьезный представитель, но все же достойный внимания. Этого кастомного красавца почти полностью собрали из конструктора LEGO. Машина самая, что ни наесть настоящая и даже демонстрирует неплохие результаты на дороге. На ее создание ушло более 500 тысяч кубиков.
Каждому автовладельцу обязательно понравятся и пригодятся 16 полезных автомобильных аксессуаров, которые сделают поездки комфортней .

Понравилась статья? Тогда поддержи нас, жми:

Монокок

LFG Roland C.II, Германия, 1916 — один из первых самолётов с фюзеляжем-монокок в чистом видеВнутренний силовой каркас Boeing 747 — усиленный монокок

Моноко́к (фр. monocoque) — тип пространственной конструкции, в которой (в отличие от каркасных или рамных конструкций) внешняя оболочка является основным и, как правило, единственным несущим элементом. В строгом смысле, термин «монокок» применяется к фюзеляжам ранних самолётов; в современном языке термин также применяется к несущим кузовам гоночных автомобилей, лодок и к велосипедным рамам.

Полумоноко́к или усиленный монокок — конструкция, в которой нагрузки несут как внешняя тонкостенная оболочка, так и подкрепляющий её силовой каркас (шпангоуты, стрингеры).

Авиация

Монококовые — бескаркасные — конструкции фюзеляжей возникли в 1910-е годы с целью уменьшить сопротивление воздуха. Применение трубчатых оболочек из гнутой фанеры позволило создавать гладкие фюзеляжи c поперечным сечением на 20–30% меньше, чем коробчатые каркасные фюзеляжи аналогов. В 1920-е гг. началось массовое применения обшивки из алюминиевых сплавов. Монококи, более дорогие в изготовлении, применялись на скоростных машинах и полностью вытеснили каркасные оболочки только после Второй мировой войны.

Чистый монокок хорошо сопротивляется нагрузкам на растяжение и изгиб, но не работает на сжатие, поэтому на практике требует подкрепления каркасом, работающим на сжатие. Современные фюзеляжи, как правило, выполняются по схеме усиленного монокока, при этом допускается коробление внешних панелей под нагрузкой — оно не приводит к разрушению конструкции в целом. См. также Сталь-8, МиГ-5, МиГ-25

Автомобили

Кузов-монокок из углепластика с отъёмным лонжеронным подрамником в передней части.

Некоторые автомобили имеют скорлупные несущие кузова-монококи, обычно выполненные из неметаллических материалов, в частности, композитов — стеклопластика и углепластика. Однако из-за соображений безопасности более типично использование в конструкции кузова усиленного монокока (полумонокока). При этом для крепления наиболее массивных агрегатов как правило используются закреплённые на кузове подрамники.

> Велосипеды

См. Велосипедная рама

Ссылки

  • Авиационно-космические конструкции на krugosvet.ru
  • Электромотоцикл EV-o RR с несущим кузовом (недоступная ссылка)
Это заготовка статьи об авиации. Вы можете помочь проекту, дополнив её.

АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: МОНОКОКОВАЯ КОНСТРУКЦИЯ

АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: МОНОКОКОВАЯ КОНСТРУКЦИЯ К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Принцип монокока. С увеличением скоростей полета самолета все более важной становилась проблема уменьшения лобового сопротивления. Вполне естественным шагом при этом стала замена полотняной обшивки крыла металлической обшивкой, изготавливаемой из тонких листов алюминиевых сплавов. Металлическая обшивка позволила устранить прогибы между нервюрами и, следовательно, более точно воспроизвести формы, рекомендованные аэродинамиками на основе теоретических расчетов и экспериментальных исследований в аэродинамических трубах. Одновременно изменилась конструкция фюзеляжа. Прямоугольный силовой каркас был помещен внутрь оболочечной конструкции, составленной из легких шпангоутов и стрингеров; такая конструкция лучше удовлетворяла требованиям аэродинамики к форме фюзеляжа. На одномоторных самолетах переднюю часть фюзеляжа тоже стали обшивать листовым металлом, чтобы уменьшить вероятность возникновения пожара. Когда потребовалось улучшить гладкость поверхности, полотняную обшивку заменили фанерной или металлической по всей длине фюзеляжа, но такая обшивка стала чрезмерно дорогой и тяжелой. Было слишком расточительно так увеличивать вес конструкции и не использовать ее возросшие прочностные свойства для восприятия аэродинамических нагрузок. Следующий шаг был очевиден. Так как внешняя оболочка фюзеляжа стала достаточно прочной, появилась возможность убрать внутренний каркас. В этом состоит принцип монококовой конструкции. Монокок — это цельная оболочка, форма которой удовлетворяет требованиям аэродинамики и в то же время является достаточно прочной для того, чтобы воспринимать и передавать нагрузки, возникающие при полете, посадке и движении самолета по земле. Термин «монокок» — гибрид, составленный из греческого и французского слов и дословно переводимый как «цельная раковина». Этот термин применяют к крыльям и фюзеляжам, у которых обшивка является главным несущим элементом. Второе важное достоинство монококовой конструкции иллюстрирует рис. 7. Сечение каркасной конструкции, предназначенной для размещения внутри нее двух человек, имеет прямоугольную форму, изображенную сплошной линией. Внешняя оболочка фюзеляжа с полотняной обшивкой показана штриховой линией. Внешний обвод монококового фюзеляжа, в котором помещаются два человека, представлен штрих-пунктирной линией. С помощью планиметра легко установить, что площадь поперечного сечения монококовой конструкции на 33% меньше, чем для хорошо обтекаемого каркасного фюзеляжа. При прочих равных условиях сопротивление фюзеляжа пропорционально площади его поперечного сечения. Следовательно, монококовая конструкция, в первом приближении, позволяет уменьшить сопротивление на 33% только за счет меньшей площади поперечного сечения по сравнению с каркасной конструкцией. К тому же появляется выигрыш в подъемной силе вследствие лучшего обтекания и гладкости поверхности. Однако каркасные конструкции из-за меньшей стоимости их производства и относительно меньшего веса продолжали использовать для тихоходных самолетов даже после Второй мировой войны. Монококовые конструкции применяли на самолетах, летающих со скоростями более 320 км/ч. Тонкостенные монококи. Типичный тонкостенный монокок для транспортного самолета изготавливают обычно из тонких пластин алюминиевого сплава, которым придают форму, согласующуюся с требованиями аэродинамики. Эту оболочку подкрепляют поперечными силовыми элементами — шпангоутами, и продольными силовыми элементами — лонжеронами или стрингерами. (Эти термины относятся к конструкции фюзеляжа. В конструкции крыла продольные силовые элементы — стрингеры, а поперечные — нервюры.) На рис. 8 показано, как устроен типичный монококовый фюзеляж. (Эту конструкцию сейчас принято называть «полумонокок» или «усиленный монокок», тогда как термин «чистый монокок» или просто «монокок» используют для внешних оболочек, имеющих минимум подкрепляющих элементов или не имеющих их вовсе.) Вследствие больших размеров фюзеляжа и сравнительно небольших аэродинамических нагрузок оболочку монокока делают очень тонкой (обычно от 0,5 до 1,5 мм). Такая тонкая оболочка сохраняет свою форму, если на нее действуют силы растяжения, но она коробится под действием сил сжатия или срезывающих усилий. На рис. 9 показано действие сил сжатия на металлическую пластину прямоугольной формы. Такие силы сжатия испытывают, например, металлические панели, ограниченные по краям стрингерами, на верхней части фюзеляжа, когда аэродинамические силы, действующие на хвостовое оперение самолета, направлены вверх. Согласно законам механики твердого тела, критическое напряжение (т.е. нагрузка на единицу площади), при котором плоская пластина начинает коробиться, можно вычислить по формуле где fкр — критическое напряжение, вызывающее коробление пластины, Е — модуль упругости материала, t — толщина и b — ширина пластины между опорами (в реальной конструкции это расстояние между стрингерами). Например, если панель толщиной 0,5 мм и шириной 150 мм изготовлена из алюминиевого сплава, то ее модуль упругости равен приблизительно 70 000 МПа. Подставляя эти значения в формулу (3), получим, что величина критического напряжения, при котором наступает коробление обшивки, составляет 2,8 МПа. Это значительно меньше предела текучести (280 МПа) и предела прочности (440 МПа) материала. Материал монокока будет использоваться неэффективно, если коробление означает утрату способности пластины выдерживать нагрузку. К счастью, это не так. Испытания, проведенные Национальным институтом стандартов и технологии США, показали, что нагрузки, действующие на край панели, могут значительно превышать величину критической нагрузки, соответствующей началу коробления, поскольку нагрузка, приложенная к панели, почти полностью воспринимается полосками материала у ее краев. Общая ширина этих полосок была названа Т.фон Карманом «эффективной шириной» пластины. Согласно его теории, предельная нагрузка, испытываемая панелью в момент ее разрушения вследствие возникновения текучести материала вблизи зажатых кромок, может быть вычислена по формуле Здесь P — суммарная нагрузка, действующая на панель в момент разрушения, t — толщина панели, E — модуль упругости и fтек — предел текучести материала (напряжение, при котором деформация начинает увеличиваться без дальнейшего увеличения нагрузки). Расчеты по формулам (3) и (4) показывают, что критическая нагрузка, вызывающая коробление, примерно на порядок меньше предельной нагрузки, вызывающей разрушение. Этот вывод необходимо учитывать при проектировании самолета. Использование тонких пластин в закритическом для коробления состоянии является одной из главных отличительных черт тонкостенных монококовых конструкций. Успехи в создании транспортных самолетов, бомбардировщиков и истребителей во время Второй мировой войны были бы невозможны без понимания того факта, что коробление тонкой пластины не вызывает ее разрушения. В более консервативных областях технической механики, таких, как проектирование мостов и зданий, коробление панелей не допускается. С другой стороны, тысячи самолетов летают, и при этом часть металлических пластин в их конструкциях работает в условиях коробления большую часть полетного времени. Правильно сконструированные панели, испытывающие коробление в полете, становятся абсолютно гладкими, как только самолет совершит посадку и исчезнут аэродинамические нагрузки, действующие на конструкцию в полете. Тонкостенная балка. Другой вид коробления относится к тонкостенной балке — важному элементу авиационных конструкций. Концепция тонкостенной балки разъясняется на рис. 10. При действии силы W на свободный конец тонкостенной балки ее верхний фланец будет подвергаться воздействию растягивающих усилий, а нижний — воздействию сжимающих усилий. Величину сил, действующих на фланцы, можно вычислить из условия статического равновесия. Срезывающее усилие, создаваемое силой W, передается по тонкой стенке балки. Такая тонкая пластина теряет устойчивость и начинает коробиться при довольно небольшой нагрузке. На ней образуются диагональные складки, т.е. конфигурация ее коробления существенно отличается от полусферических выпуклостей, появляющихся при короблении поверхности пластины вследствие ее сжатия. Г.Вагнер разработал практический метод расчета напряжений в тонкостенной балке в условиях образования складок на стенках и доказал экспериментально, что можно спроектировать тонкостенную балку, которая не разрушается при действии полетных нагрузок, в 100 раз превышающих нагрузки, при которых начинается коробление тонкой стенки. Деформации остаются упругими, и складки исчезают полностью при снятии нагрузки. Вследствие изгиба всей конструкции под действием нагрузки, показанной на рис. 10, верхний фланец балки растягивается, а нижний — сжимается. При появлении складок тонкая стенка работает как совокупность большого числа диагональных расчалок, которые принимают на себя срезывающие усилия подобно внешним расчалкам крыла расчалочного моноплана (рис. 1). Назначение вертикальных стоек — сохранить расстояние между фланцами балки. В 1930-х годах концепция тонкостенной балки стала повсеместно использоваться в авиастроении при конструировании тонкостенных монококов, в частности, для лонжеронов крыла со стенками, воспринимающими срезывающие усилия. Компоновка конструктивных элементов в тонкостенных монококах. Идеальный тонкостенный монококовый фюзеляж состоит из тонких пластин, подкрепленных большим числом более или менее равномерно распределенных стрингеров и шпангоутов, как показано на рис. 8. Однако в самом фюзеляже приходится делать вырезы, в которых размещаются иллюминаторы и двери на пассажирских самолетах или пушечные турели и люки для бомбометания на военных самолетах. В случае больших отверстий, как, например, на тяжелых самолетах, предназначенных для перевозки полностью снаряженной гусеничной техники, или на торпедоносцах, которые несут внутри фюзеляжа большие торпеды, концентрация напряжений около вырезов становится серьезной проблемой. Часто края таких вырезов усиливают с помощью прочных лонжеронов. На некоторых самолетах в фюзеляжах приходится предусматривать столь большое число вырезов, что конструктор предпочитает использовать несущие свойства четырех главных лонжеронов и применяет короткие стрингеры только как вспомогательные силовые элементы, так как разрезанный силовой элемент не способен передавать нагрузку. Вследствие того что нагрузки воздействуют в основном на четыре главных элемента конструкции, такой тип фюзеляжа является фактически промежуточным между каркасной конструкцией и усиленным монококом. Его можно рассматривать как частично усиленный монокок. Такие монококи чаще применяют для крыльев, чем для фюзеляжей, поскольку в крыльях самолета приходится размещать убирающиеся элементы шасси, баки с топливом, двигатели, убирающиеся закрылки, элероны, пулеметы, пушки и многочисленные второстепенные детали. Наиболее серьезные проблемы, обусловленные нарушением целостности усиленной монококовой конструкции, связаны с размещением шасси и топливных баков, потому что эти агрегаты находятся вблизи корневой части крыла, где конструкция должна быть наиболее прочной. Кроме того, на многих компоновках не допускается прохождение крыла сквозь фюзеляж, поскольку это пространство необходимо для размещения экипажа, пассажиров или двигателей. Поэтому в конструкции крыла применяют два прочных лонжерона, как это делается на моноплане с высокорасположенным крылом. Пространство между двумя лонжеронами можно использовать для размещения вышеупомянутых агрегатов и узлов. На участках крыла, не имеющих прорезей, обшивка подкрепляется стрингерами, которые способствуют дополнительному увеличению прочности крыла. Тем не менее, основную часть нагрузки берут на себя два главных лонжерона. Чисто монококовую конструкцию имеют внешние консоли крыла (рис. 11). Нагрузки воспринимаются обшивкой и продольными силовыми элементами консоли. Различие между вертикальной стенкой и лонжероном заключается в том, что у стенки стыковочный элемент имеет ту же форму, что и остальные стрингеры, тогда как лонжерон крепится с помощью более массивных фланцев. Концепция толстостенной монококовой конструкции. В годы Второй мировой войны скорость опытных самолетов стала приближаться к скорости звука, и тонкостенные монококовые конструкции перестали удовлетворять возросшим требованиям. Одним из факторов, способствовавших повышению скоростей полета, явилось создание т.н. ламинарных профилей крыла, которые имели очень низкое сопротивление. Однако преимущества ламинарных крыльев могли быть реализованы только при условии точного соблюдения требуемой формы поверхности крыла, и малейшие нарушения гладкости поверхности (выступающие заклепки или углубления для потайных заклепок) сводили к нулю все преимущества ламинарного профиля. По этой причине тонкостенные усиленные монококи оказались непригодными для создания крыла с ламинарным обтеканием для высокоскоростных самолетов. Другим фактором, требующим точного соблюдения формы крыла и фюзеляжа высокоскоростных самолетов, является неустойчивость трансзвукового потока. В трансзвуковых течениях очень небольшие изменения формы обтекаемой поверхности могут вызвать полное изменение картины обтекания и появление скачков уплотнения, которые приводят к резкому возрастанию силы сопротивления. Поскольку выдержать точно нужную форму поверхности, изготавливаемой из тонких пластин, очень трудно, пришлось пойти на увеличение толщины обшивки авиационных конструкций. Еще одним основанием для увеличения толщины обшивки являлась недостаточная величина строительной высоты (расстояния h на рис. 6) конструкции крыла самолета. Рассчитанные на высокие скорости полета профили крыла должны быть очень тонкими (максимальная относительная толщина крыльев для сверхзвуковых самолетов и ракет обычно составляет менее 10% хорды). Нагрузки, действующие на нижнюю и верхнюю поверхности такого крыла, очень велики, и их может выдержать только толстая обшивка. Концепция сэндвича. Первой толстостенной конструкцией, использовавшей концепцию сэндвича (многослойной конструкции), была обшивка на истребителе «Хэвилленд Москито». В этой конструкции пространство между двумя тонкими прочными обшивками (несущими слоями) заполнено значительно более легким материалом; такая составная панель способна выдерживать более значительные изгибающие нагрузки, чем две несущие обшивки без заполнителя, соединенные вместе. Кроме того, эта многослойная конструкция остается легкой, так как заполнитель имеет небольшую плотность. В качестве примера легкой многослойной конструкции, обладающей повышенной прочностью, можно привести упаковочный картон, в котором между двумя внешними листами картона находится гофрированная бумажная прослойка. Многослойный картон обладает большей жесткостью на изгиб и прочностью, чем лист картона, соответствующий ему по весу. Важным фактором, препятствующим короблению поверхности, является способность панели выдерживать изгибающие нагрузки. Толстостенные многослойные обшивки, обладающие повышенной жесткостью на изгиб, не допускают коробления поверхности при обычных летных ситуациях и способствуют сохранению гладкой формы поверхности крыла и фюзеляжа. Несущие слои соединяются со слоем из заполнителя с помощью клея. Клепка не используется, и это обеспечивает гладкость поверхности. Методы производства многослойных конструкций. Для производства элементов многослойных конструкций сложной формы используют несколько методов. Один из них разъясняется на рис. 12. Изготавливают пресс-форму, точно воспроизводящую нужную форму многослойного элемента. Слои многослойной конструкции смазывают синтетическим клеем и помещают в пресс-форму. Обшивка многослойной конструкции накрывается оболочкой из герметического материала, например из прочной резины, и пресс-форма плотно закрывается крышкой. Внутрь оболочки под давлением нагнетают горячий пар, и под действием высокой температуры и равномерного давления пара клей отвердевает и надежно соединяет несущие слои с наполнителем. Такая формовочная технология может использоваться для изготовления конструктивных элементов сложной формы с искривленными стенками переменной толщины. Во время Второй мировой войны синтетические клеи и технология склеивания слоевых конструкций нашли широкое применение в авиационной промышленности. Эта технология обеспечивала прочное соединение таких разнородных материалов, как древесина и металлы, и позволила наладить дешевое производство обшивок с гладкими поверхностями. Разрушение многослойной конструкции. Как и в случаях каркасных конструкций и тонкостенных монококов, разрушение многослойной конструкции начинается на той стороне, которая подвергается сжатию. Из-за большой толщины многослойной панели сжимающее усилие, вызывающее потерю устойчивости и коробление, существенно превышает то значение, при котором на поверхности тонкостенных усиленных монококов впервые появляются признаки коробления. Отношение этих величин может достигать 20 или даже 50. Следует, однако, помнить, что тонкостенные монококи могут работать при нагрузках, намного превышающих критическую нагрузку начала коробления, тогда как коробление поверхности многослойной обшивки всегда вызывает разрушение последней. Критическую нагрузку, вызывающую потерю устойчивости многослойной обшивки, можно оценить, используя методы расчета однородных пластин и однослойных оболочек. Однако сравнительно небольшое сопротивление срезу материала легкого заполнителя заметно уменьшает величину критического напряжения, и этим эффектом нельзя пренебрегать. Потеря устойчивости многослойной конструкции обычно приводит к короблению или образованию складок на поверхности тонких несущих оболочек. На рис. 13 показаны два вида неустойчивости: симметричное вспучивание и перекос. Симметричное вспучивание возникает в случае большой толщины слоя с заполнителем, а перекос — в случае небольшой толщины такого слоя. Критическое напряжение, вызывающее потерю устойчивости многослойной конструкции, сопровождаемую появлением обеих форм коробления поверхности, можно определить по формуле где fкр — критическое значение напряжения для несущих слоев, Ef — модуль упругости материала несущего слоя, Ec — модуль упругости материала заполнителя, Gc — модуль сдвига материала заполнителя. В качестве примера рассмотрим многослойную конструкцию с несущими слоями из алюминиевого сплава и пористым заполнителем из ацетилцеллюлозного волокна. Модуль упругости алюминиевого сплава составляет приблизительно 70 000 МПа, а для материала заполнителя он равен 28 МПа. Модуль сдвига для материала заполнителя равен 14 МПа. Подставляя эти значения в формулу (5), найдем, что критическое значение напряжения для коробления равно 150 МПа. Отметим, что в соотношение (5) не входят геометрические характеристики панели. Следовательно, критическое напряжение не зависит от толщин несущих слоев и слоя с заполнителем. Единственной возможностью повысить несущую способность конструкции по отношению к короблению является использование заполнителя с лучшими механическими свойствами. Другие типы толстостенных оболочек. После Второй мировой войны были разработаны и внедрены в производство различные модификации описанной выше первоначальной многослойной конструкции. На рис. 14 показана сотовая конструкция. В ней промежуточным слоем служит сотовый (ячеистый) заполнитель. На рис. 15 показан другой тип многослойной конструкции, в которой заполнителем является гофрированный алюминий. Эта конструкция, сходная с упаковочным картоном, характеризуется высокой жесткостью и устойчивостью, однако гофрированную ленту не следует соединять с несущими оболочками при помощи заклепок. В других конструкциях обшивка и слой, усиливающий ее жесткость, вальцуются, и им придается форма сечения крыла или фюзеляжа. Наконец, для сильно нагруженных очень тонких крыльев было налажено производство обшивок переменной толщины из прочного алюминиевого сплава с максимальными толщинами около 19 мм. Такие прочные обшивки позволяют изготовить крыло, которое сохраняет свою форму даже без нервюр только за счет жесткости самой обшивки, усиленной тремя или четырьмя опирающимися на лонжероны стенками, работающими на срез.

В середине июля по миру прошла рядовая новость: Land Rover Defender оставляют в производстве. А перед этим еще одна небольшая новость о новой детали от BASF для заднего редуктора Mercedes S-класса. Ну и вспомним главную люкс-новинку первой половины 2015 года – новый BMW 7-серии. Что общего в этих автомобилях? Общее — в использовании разных материалов вместо привычной стали для кузова автомобиля: алюминий, пластик, карбон – давайте посмотрим, за чем будущее автомобилестроения.

Предыстория автомобильных кузовов

Кузов автомобиля – без сомнения, важнейшая его часть: это и место установки всех узлов, и пассажирский салон, и управляемость, и безопасность, и дизайн. В современном понимании кузов легкового автомобиля представляет собой несущую конструкцию из разных сортов стали. Но так было далеко не всегда. Первые автомобили имели рамную конструкцию, которая до сегодня сохранилась на грузовиках и нескольких моделях внедорожников. Также в первых автомобилях нередко использовали дерево при изготовлении деталей кузова.
Революция произошла в 1920-х годах: в 1921-м была представлена Lancia Lambda с несущим кузовом (рама исчезла, всю нагрузку воспринимал кузов). А в 1924 году был представлен Citroen B10 – первый массовый автомобиль Европы с цельностальным кузовом.

Подобный подход – цельностальной несущий кузов – царил в мире автомобилестроения десятилетиями, лишь периодически допуская вольности «на тему». Причем зачастую отход от привычной стали был вызван лишь двумя причинами: или экономией (денег, ресурсов), или желанием облегчить кузова. Случаи экономии были особенно актуальными после Второй Мировой Войны, когда промышленности попросту недоставало стального проката. Это привело к необычным результатам в виде Land Rover Series 1 (впоследствии модель Defender; внешние алюминиевые панели) и Willys Jeep Station Wagon «Woodie» (деревянные панели кузова). Желание снизить вес привело к использованию сначала алюминиевых, а теперь и карбоновых кузовов. Но если ранее подобные случаи были редкостью, встречались в дорогих и специфических автомобилях или спорткарах, то теперь алюминий и карбон готовятся выйти на массовый рынок.

Почему? Причина не только в желании научить гражданский автомобиль ехать как спортивный (не без того, но это далеко не первая причина), но больше в маркетинге («вау, у меня карбоновый автомобиль») и в желании вписаться в новые жесткие экологические стандарты по выхлопу, для чего требуется заметное сокращение расхода топлива. А одним из путей снижения расхода является облегчение автомобиля; плюс добавьте упомянутый маркетинг – вот и ответ.

Алюминий как угроза привычной стали

Алюминий является одним из самых привлекательных материалов для создания кузова автомобиля: он легкий и не боится коррозии, а его производственный процесс (отливка, штамповка) несильно отличается от стали. Первый алюминиевый автомобиль уже есть – это модель Audi A8, которая, начиная с первого поколения и до сегодня, выпускается с полностью алюминиевым кузовом.

Фирменное название Audi ASF расшифровывается как Audi Space Frame, т.е. «пространственная рама Ауди», что недалеко от истины – это несущий кузов, в котором не только панели, но и все усилители были сделаны из алюминия. Концепт Audi ASF был представлен в 1993 году, а уже в 1994-м начался серийный выпуск седана Audi A8 – первого в мире массового автомобиля с полностью алюминиевым кузовом

Уточнение об алюминиевом несущем кузове критически важно, ведь множество других автомобилей также используют алюминий – но в чем же разница? В том, что компания Audi производит несущий алюминиевый кузов, а многие автомобили используют лишь внешние панели, которые крепятся к раме или к основному стальному кузову – т.е. алюминиевые детали в этом случае не несут нагрузку.

Это было одной из основных проблем алюминия – фактически нужно было заново рассчитывать всю силовую структуру кузова, все усилители и распорки, прорабатывать зоны деформации для алюминиевых деталей. Второй существенной проблемой алюминия является метод соединения различных деталей между собой. Так, алюминиевые детали можно сваривать, но только специальным методом и в среде инертных газов, либо с помощью лазерной сварки. Причем этот метод неприменим при соединении стальных и алюминиевых деталей – тогда начинается электрохимическая коррозия и алюминий начинает «ржаветь», постепенно превращаясь в труху. В таких случаях помогут заклепки, причем, чтобы избежать электрохимической коррозии, заклепки имеют тонкий слой нейтрального покрытия, а на всей площади соединения алюминия со сталью нанесен эпоксидный клей-«изолятор». Кстати, склеивание – это еще один способ соединения алюминиевых деталей. Плюс традиционные болты. Причем часто все способы соединения деталей используются в одном автомобиле. К примеру, в том же седане Audi A8 для соединения всех деталей кузова из 13 (!) сортов алюминия, использовано 1847 заклепок, 632 винта, 202 точки сварки, 44 м клееных соединений, 25 м сварки в среде инертных газов, 6 м лазерной сварки.

Автомобиль BMW 5-серии E60 стал первым в мире, где к стальному кузову была прикреплена алюминиевая передняя часть. В этом случае для соединения деталей могли использоваться только те методы, которые не допускали контакта разных материалов. А значит – только заклепки и клей-изолятор.

Являясь пионером серийного использования алюминия в кузове, компания Audi попыталась распространить свою идею на массовый класс, запустив в серию модель Audi A2 с полностью алюминиевым кузовом. Но ни высокие технологии, ни хорошая аэродинамика, ни простор салона, ни попытки снизить цену, используя «обще-VAG-овские» двигатели, не помогли: Audi A2 «не пошла». Возможно, помня пример А2, Audi так и не решилась расширить свою алюминиевую программу на другие модели, оставив алюминиевый несущий кузов только для Audi A8.

Это привело к тому, что сегодня компания Audi уже в числе догоняющих. Ведь еще в 2003 году был выпущен Jaguar XJ с полностью алюминиевым несущим кузовом. Опыт оказался успешен, и нынешний Jaguar XJ также полностью алюминиевый. Мало того, опыт построения алюминиевых кузовов распространился и на другие автомобили группы Jaguar Land Rover: современный Range Rover; последовавший за ним Range Rover Sport; седан Jaguar XE.

Jaguar XE построен на новой модульной платформе iQ , которая состоит из алюминиевого сплава RC5757 (алюминий + кремний + магний) примерно на 70%, включая всю несущую структуру: салон, пол, усилители, передняя и задняя части. Сегодня Jaguar XE приводит статус «полностью алюминиевого авто» в класс D-premium, чем открывает дорогу алюминию к «широким массам»Словом, сегодня мы видим уже целый ряд серийных автомобилей разных классов с полностью алюминиевыми кузовами. Но еще больше автомобилей с частично алюминиевыми кузовами – когда из алюминия не весь кузов, но достаточно большая его часть. К примеру, алюминиевый опыт Audi пригодился при создании Audi Q7 2-го поколения (алюминиевая передняя часть кузова; алюминий занимает около 41% в структуре кузова) и для родственных моделей Porsche (в новых Boxter и Cayman алюминий используется в разных частях кузова, его доля – 46%).

Даже подобный частично-алюминиевый кузов позволяет заметно облегчить автомобиль: к примеру, новый Audi Q7 сбросил 70 кг относительно предшественника. Но сравнимый по размерам и классу полностью алюминиевый Range Rover L405 полегчал на 420 кг, из которых 180 кг – на счету алюминиевого кузова, который теперь весит лишь чуть больше, чем кузов Mini Countryman.

Конечно, с алюминием сегодня работают не только Audi и Jaguar Land Rover, но и другие компании. Правда, в основном алюминиевые сплавы используются лишь частично – для крышки капота или багажника, в деталях ходовой части, для «передка» автомобиля, как в случае с уже упоминавшейся BMW 5-серии. Но сегодня компания BMW увлечена другим материалом – карбоном.

Карбон приходит в массы

Модели BMW i3 и BMW i8 перевернули мир. И здесь дело не только в приводе (электро или гибрид), не только в неформатном дизайне с необычными дверями, но и в том, что это первые в мире крупносерийные автомобили с карбоновыми кузовами. Обе модели построены по схожей схеме: снизу расположена алюминиевая платформа Drive с двигателем, подвеской, блоком АКБ; сверху установлен карбоновый кузов Life с салоном, багажником, фарами, дверями; две половинки соединены между собой болтами. Интересно, что являясь одними из самых передовых автомобилей в мире, BMW i3 и BMW i8 фактически возвращают нас к истокам автомобилестроения – рамным конструкциям начала ХХ века.

Куцый BMW i3 на самом деле является революцией в мире автомобилей: электропривод с возможностью подзарядки АКБ от встроенного ДВС-генератора; необычный минивэно-образный кузов с распашными дверями; повсеместное использование переработанных материалов; и, наконец, рамная алюминиево-карбоновая конструкция

Причем и сам карбоновый кузов BMW i3 очень необычен в своем производственном процессе. Так, при изготовлении карбоновых несущих монококов суперкаров обычно берут слой углеволокна, промазывают его смолой-клеем, затем поверх укладывают следующий слой, причем с ориентацией волокон в другом направлении (как правило, под углом 90 градусов – отсюда и привычный решетчатый рисунок карбона). После чего готовый сформированный кузов-монокок выпекают в печи-автоклаве. В случае с BMW i-серии карбоновый кузов собирают из нескольких деталей, склеивая их между собой: процесс подобен сварке обычного стального кузова. При этом еще и сами детали кузова изготавливают по более простой технологии RTM (Resin Transfer Moulding): это когда в форму детали укладывают несколько слоев углеволокна, затем под давлением нагнетают смолу-клей, и, наконец, выпекают нужную панель кузова. Экономия налицо: и времени (процесс автоматизирован, минимум работы людей); и места (печи для выпекания отдельных деталей меньше, чем печь для цельного монокока). В результате речь идет не о сотне-другой суперкаров с карбоновым кузовом типа «монокок», а о десятках тысяч серийных BMW i3, сопоставимых по цене с обычными «тройками» или «пятерками». При этом сложная алюминиево-карбоновая конструкция обеспечила необходимую жесткость и безопасность и существенно облегчила автомобиль, даже с учетом тяжелой АКБ.

Важно отметить, что «карбоновый автомобиль» компания BMW создает не сама, а в сотрудничестве с американской фирмой SGL Group. Изначально объем работ был оценен в 3 тыс. тонн, но недавно планы пересмотрены – теперь объем производства карбоновых деталей оценивается в 9,5 тыс. тонн ежегодно. А это означает, что немцы верят в карбон и будут развивать данное направление. Первый пример, после революционных BMW i3 и BMW i8, уже есть – новый седан BMW 7-серии G12, который был официально представлен в начале 2015 года.

Кузов BMW 7-серии G12 построен по принципу Carbon Core («Карбоновое ядро»): здесь карбоновые детали присутствуют в различных усилителях, стойках крыши, боковинах кузова и пр.; хотя максимально широко также используется сталь и алюминий. В результате кузов новинки стал легче на 40 кг, не потеряв в безопасности и жесткости. Соединение разнородных материалов – с помощью клея и заклепок. О сложности и дороговизне ремонта умолчим.

С помощью технологии производства RTM компания BMW приводит карбон на массовый рынок. Однако это далеко не те несущие карбоновые монококи, которые мы привыкли видеть в суперкарах или гоночных автомобилях: в обоих случаях (i-серия или новая «семерка») большую часть нагрузки воспринимает не монокок, а привычная конструкция из алюминия и стали. Вместе с тем, технология RTM позволяет решить две главные проблемы карбона: сложность, скорость, дороговизну производства и возможность ремонта кузова в случае аварии – достаточно лишь вырезать поврежденную деталь и вклеить новую.

А как же пластик? Или что-то другое?

При разговоре об альтернативных материалах для кузова мысль о пластике приходит одной из первых: дешевый, легкий, простой в производстве и ремонте. Конечно, пластик не может нести нагрузки, но почему не использовать его для внешних декоративных деталей кузова: крылья, крышка багажника? Он и используется, причем давно и на самых разных автомобилях: начиная от доступного Renault Clio Symbol и заканчивая суперкаром Chevrolet Corvette.

Недорогой Renault Clio Symbol еще в конце 1990-х годов предложил пластиковые передние крылья – как пример того, что необычные кузовные материалы встречаются не только в суперкарах и люкс-седанах. Вскоре пластиковые детали кузова начали использоваться и на других моделях компании: например, Renault Megane.

Эксперименты с пластиком и стеклопластиком (пластик, армированный стекловолокном) продолжаются и сегодня. К примеру, недавно компания BASF показала новую деталь для заднего моста Mercedes-Benz S-класса W222: поперечину, изготовленную из особого сорта пластика Ultramid, армированного стеклотканью. Новая деталь на 25% легче алюминиевого аналога, при этом предлагает нужную прочность, не растеряв всех преимуществ обычного пластика (цена и простота производства). А для концепт-кара Smart Vision 2011 года из пластика сделали колесные диски.

Наконец, несколько слов о композитных материалах. Композитом называется материал, который состоит из нескольких материалов, соединенных между собой; каждый из материалов должен отдать свои лучшие качества, а худшее скомпенсировать преимуществами «соседа». Для понимания: в строительства композитом можно назвать железобетон. А в автомобилестроении наиболее популярными композитными материалами являются карбон (углеволокно + смола) и стеклопластик (стекловолокно + пластиковая масса) – их мы рассмотрели выше. Но композиты могут быть и другими. К примеру, компания BMW (да-да, снова BMW!) в свое время разрабатывала трехслойную крышку капота для BMW M3: сверху и снизу скорлупа из карбона, а по центру – наполнитель из картона! Этот капот оказался вдвое легче обычного алюминиевого, да еще и обеспечивал лучшие результаты безопасности при ударе головы пешехода. С таким подходом и весь кузов, собранный из разных материалов, можно назвать композитным.

Новый Mercedes-Benz S-класса W222 собрал в себе «всего понемногу»: основа – классический стальной несущий кузов; плюс алюминиевые двери, крыша (-5,5 кг от аналогичной детали из стали), передняя часть с крыльями (-14 кг), опоры задних амортизаторов; добавим к этому и пластиковый бак (-18 кг) и перегородку багажника (-3 кг). А теперь – возможно, будет и пластиковая поперечина заднего редуктора. На фоне алюминиевых наработок Audi и Jaguar Land Rover да карбоновых автомобилей BMW этот подход не выглядит сверхсовременным, но свои плоды в виде облегчения кузова на 95 кг он дал

Так из чего же будут делать автомобили в будущем?

Пока что – из стали, но с постепенным расширением списка алюминиевых, пластиковых и карбоновых деталей. Сегодня, с внедрением новых технологий (RTM-карбон; новые сорта алюминия, новые методы его соединения) и расширением перечня моделей из необычных материалов (что приведет к снижению их стоимости), карбон и алюминий будут входить на массовый рынок автомобилей все быстрее и быстрее. Похоже, что уже через 5-10 лет современный автомобиль даже D-класса будет хотя бы частично состоять из карбона или алюминия и окажется существенно легче своих предшественников, что позволит добиться улучшения динамики и топливной экономичности.

Nissan 200SX EAT_SLEEP_DRIFT ›
Бортжурнал ›
Карбон, как способ облегчить авто и кошелёк

Да… Давненько я тут небыл. Не знаю как вам, а мне пришлось перечитать бортовик, чтобы вспомнить чего тут вообще к чему =) стыдно говорить, но машина с ноября или декабря стояла без движения. Приезжал к ней редко и не очень продуктивно. Причин несколько: свет в гараже был отключен 4 месяца, а с фонариком особо нихрена и не сделаешь; времени небыло, а то что было я тратил на вторую любимую (девушку) или тупо на сон; на работе произошли изменения и на мне повисло слишком много и на слишком большой срок, потому стало мне не до моей любимой красавицы. Итог, пропущенный сезон, но я смирился и решил что наспех абы как делать не буду, лучше долго чем хреного. Итого машина строиться ммм… Почти 2 года уже)) жееееесть! Есть правда одна оговорочка, другой проект таки был закончен и дарит удовольствие и радость. EAT SLEEP RACE почитайте, зацените!

Отсюда сделаны выводы, которые обошлись очень дорого) ВНИМАНИЕ!
— если хочешь давать угла, покупай готовый проект, это значительно выгоднее. Да пусть машина будет немного не такая как в твоих ванильных мечтах, но она реально будет дарить радость и адреналин + опыт дрифта который ты будешь получать в это время, а не опыт вращения гаек и работой болгарки. За 400-500 тыщ проектов море. Реально проще поработать побольше и перетерпеть, купить корыто и сразу начать давать угла! Дешево, продуктивно и адреналинисто. Те кто будет говорить что за 400-500 можно посторить охренеть какой космолет для дрифта – ребята, вы заблуждаетесь. Я сам также все расписывал на листочке и у меня все срасталось. Их я уже сжег, а подсчеты стоимости вообще перестал вести.
— если хочешь много дури под капотом ставь изначально более мощный мотор. 1-GZ, 2-GZ на левый руль самое то! На правый руль RB25det. (почему 25det ? потому что запчасти на него стоят в 3-4! Раза дешевле чем на 26). В мотор лучше ваще не лазить. Масло поменял, буст подключил, обеспечение есть? Тогда в путь! Сделать из SR мотор похожий по характеристикам на RB26 в 2 раза дороже чем сам RB26.
— Тюнинг на мотор (помимо обеспечения в виде маслокулеров, радиаторов и т.п. – дроч), рецепт настоящего дрифтера, ХОРОШИЙ стоковый мотор + очко буста! (моно и переплатить, если он действительно хороший, поверьте это будет выгоднее чем взять полумертвый и с ним возиться – это потеря времени и денег). Посмострите на машины япошек, облегченные, стоковые ведра на бустапе, блоке и стойках. Всё – так и надо.
— Любишь строить, тогда покупай кузов и начинай все с нуля. Разбирай, все выкидывай, вари, переваривай, усиливай, грунтуй, крась. И собирай на всем новом, соберешь на старом — получишь тоже корыто, тока с нормальной внешностью, таких немало.

Вобщем вот такая инфа для размышления )) Надеюсь поможет кому-нить)

Возвращаемся к зелененькой.

Как говорят ралисты (люди кстати ваще веселые), «Лучше 1000кг, чем 1000 лошадей». Вот и я так думаю. Решил облегчить ведерко, долго думал что к чему и с чего начать. Решил с дверей. Вырезать их ( внутренности все, оставив только внешний лист с ручкой), как-то руки не поднялись, много раз выдел на корчах такой метод, при открывании они гуляют как лист бумаги, не закрываются нихрена, стекла облегченные не держаться, вощем жесть. С такими дверьми ниокаких стеклоподъемниках можно и не мечтать.
Решил что карбон мой вариант.

Стал заморачиваться на эту тему и понял что настоящего карбона то толком никто и не производит! Все то что можно заказать из Америки или Японии в большинстве случаев видовой карбон для понтов, и веса толком не скидывает, и не прочный ниразу (я б сказал хрупкий), чуть какой камушек или удар, сразу идет паутина по нему. Все что продается это: только ВЕРХНИЙ слой карбона, а снизу стекловолокно, пластик и ли все что угодно но уже не карбон. Карбон имеет разную плотность, прочность, вид. Так вот есть просто для вида, он тонкий и никакой конструкционной нагрузки не несет. А есть настоящий конструкционный, который применяется при изготовлении настоящих гоночных болидов. Плотный и прочный, он действительно может соперничать при правильном использовании и при соблюдении технологического процесса со сталью. По удельным характеристикам превосходит высокопрочную сталь, например 25ХГСА. Основная составляющая часть углепластика — это нити углерода. Такие нити очень тонкие (примерно 0.005-0.010 мм в диаметре), сломать их очень просто, а вот порвать достаточно трудно. Из этих нитей сплетаются ткани. Они могут иметь разный рисунок плетения. Для придания прочности, изделие делают из нескольких слоев углеткани(5-8), каждый раз меняя угол направления плетения. Таким образом на разрыв изделие получает высоченную прочность в направлении 360 градусов. Слои скрепляются с помощью эпоксидных смол. Эти смолы вовсе не те, которые используют при работе со стеклотканью и требуют совсем других навыков и оборудования. Чтобы придать прочность изделию их карбоновых тканей нужно высокое давление и температура одновременно. Все слои должны продавиться относительно друг-друга и относительно самого себя. Т.е.сама ткань должна натянуться и спрессоваться, каждый слой. Очень легко отличить настоящий карбон прожатый под давлением от простого видового изготовленного не по технологии. Ткань имеет плетение, так вот каждое плетение в разрез имеет вот такую форму » ) «. А у прожатого оно уже не дугообразное и плоское » ] «. И ткань кажется плоской. Т.е. она прожалась под давлением и между собой все слои и сама спрессовалась. Это очень важно для веса и для прочности, т.к. выдавливается лишние смолы и материал становиться более плотным.

Гляньте, отчетливо видно что просто положили ткань и залили ее смолой. О какой прочности тут можно говорить?

А теперь о главном: есть два вида карбона мокрый и сухой карбон.

Все производители, которые занимаются выпуском карбоновых деталей типа SEBON на большой рынок, пользуются исключительно технологией мокрого карбона . Во первых, они используют карбон красивый, но не конструкционный, во вторых что более важно они используют полиэфирные смолы, которые значительно уступают по своим прочностным характеристикам эпоксидным. Плюс они значительно дешевле, нежели эпоксидные. Карбон по мокрой технологии даже не прожимают и соотношение смола/ армирующий материал (карбон) идет в пользу смолы со значительным перевесом.Примерно 70 смолы и 30 карбона. Плюс они экономят на слоях и не укладывают углеткань в нескольких направлениях, обычно ограничиваясь 1-2 слоями, которые видны глазу. Такие изделия реально тяжелее по сравнению с их сухими аналогами в 3-4 раза! Еще к минусам можно отнести то что они на солнце желтеют а при деформации мутнеют в местах изгиба, часто трескаясь (трескаются смолы и лаки, т.к. они декоративные а не прочностные.) Смолы в идеале должны быть только между волокнами самого полотна и между полотнами. Особого умения, как и дорогостоящего оборудования не нужно для изготовления такого карбона. Да и от карбона у таких изделий лишь одно название. Жаль, но это так. Я на самом деле и не удивлен, т.к. людей реально занимающихся спортом единицы и обычных понторезов миллионы. Потому в нашем коммерческом мире понятно на кого направлены взгляды производителей.

Сухой карбон, божественный материал, который применяется как основной конструкционный в таких суперкарах как Ламборгини, Макларен, Феррари, на автомобилях F1. Как вы думаете имеет ли он что-то общее с ширпотребом на рынке? На автосалоне в Париже компания Lamborghini представла экспериментальный автомобиль, получивший название Sesto Elemento (шестой элемент). Эта машина имеет полностью карбоновый кузов, карбоновые колесные диски и карбоновый интерьер, и поэтому весит всего 999 килограммов. С мотором V10 мощностью 570 сил новинка способна разогнаться до сотни за 2,5 секунды. Из карбона у концепта выполнены монокок кузова, детали подвески и карданный вал, а выпускная система изготовлена из смеси карбона и стекловолокна, и выдерживает температуру до 900 градусов. Божественно, неправдали?
В машине карбоновый МОНОКОК, это значит чтонет в этой детали швов, это единая, замкнутая бесшовная конструкция. Колесный диск R19 весит внимание 2,8 кг! О боже. Вот они идолы, у которых стоит учиться!


Вкрадце о сухом карбоне. Применяется реально только в суперкарах и высокотехнологичных областях, где нужен малый вес, высоченная прочность и пох на деньги. Соотношение армирующего волокна/ смолы — 75/25! Считайте вес вашего изделия это практически вес ткани, пропитанной смолами. Карбон прессуется высоченным давлением и запекается при высокой температуре! При изготовлении используются только эпоксидные смолы.

Как вы уже поняли я не стал тратить время и деньги на заказывание из-за бугра продукцию тогоже sebon или carbonetics. В Японии я тоже ничего не нашел отвечающего моим запросам. Я нашел человека, который работал несколько лет заграницей на одном из таких высокотехнологичных производств, разрабатывал и изготавливал карбоновые детали для таких суперкаров. Который владеет технологией бесшовного конструкционного сухого карбона. После долгих уговоров он согласился сделать мне двери) И теперь… Тарарарарара. Карбоновые двери, изготовленные по технологии сухого карбона, из дорогущего американского конструкционного карбона. Изготовлены в автоклаве!

Мама, знакомься, это Люся и Люба, они будут спать сегодня со мной)

Немного статистики:
Стандартная дверь со стеклом, стеклоподъемником и прочей нечистью – 27 кг.
Стекло – 5 кг
Железная дверь – 17 кг
Ручки, центральный замок, механизм поднятия стекол, полозья, моторчик и т.п. – 5кг

Карбоновая дверь — 4,2 кг, и это при том, что в ней применены 7 слоев карбона, сендвич-панель, чтобы дверь не играла, усилитель и покрыта лаком, чтобы карбон красиво играл на свету и блестел. Не поднялась у меня рука отдать двери на покраску в цвет авто…

Немного истории изготовления- были сняты мои двери и отданы на обработку. Сначала была снята с них 3D модель лазером, потом изготовлена матрица в 3Д станке. Погрешность изделия составляет 0,5 мм! Точностью повторены все формы двери, как внешние, так и внутренние. Т.е. все дырочки, места крепления, выемки и т.п. осталось на месте. Где надо заложены гайки, где надо болты – двери 100% повторяют оригинал, толкьо на 13кг легче. Итого сбросили 26 кг с машины. ХЗ стоило оно такого нереального гемора, или нет. Но у нас теперь НАСТОЯЩИЙ карбон, а не ширпотребная китащина. Жесткие кстати шо песец. И еще я на них попрыгал))) хотьбы хрен.
Ура товарищи, теперь у нас есть что-то общее с суперкарами)

Возвращаюсь к ведерку:
Приехали с друзьями, поставили двери.

Обули диски в резину,

Установили купленные в Tokyo team проставки на передние колеса, накрутили гайки

и пофапали на тачку,

после чего отвез машину в Tokyo team.

Коли у самого времени нет, так пусть другие ей займутся. Одну я там уже построил, вторую надеюсь тоже сделают с умом. Впринципе машина собрана, осталось переварить даунпайп, установить выхлоп, протянуть топливную магистраль, установить противо-отливной бачек с насосом, переварить впускной коллектор, чтобы можно было закрыть капот и поставить распорку, установить интеркулер с пайпами и можно делать электрику. После чего отстраивать тачку. Надеюсь успею к следующему сезону ))

Еще наконец приехали из Америки колечки на переднюю панель приборов, установил их. Вроде неплохо, все устанавливать не стал, посчитал то выглядит слишком китайски. Все должно быть в меру.

Оставил в итоге вот так

Буду рад вашим отзывам, о том, как в итоге смотриться авто в карбоне. и ваше мнение о нем.

>О компании

Композитные Технологии – это Динамично развивающаяся компания.

Год основания – июль 2018 г.

Деятельность компании – это продажа:

  1. Полиэфирных и эпоксидных смол;
  2. Материалы для производства изделий из стеклопластика и т.п.;
  3. Материалы для производства матриц;
  4. Силиконовые материалы

Основа: а) Олово; б) Платина; в) Полиуретан.

Наши преимущества

  1. Своевременная и быстрая доставка заказов (транспортная компания, курьерская служба). Работаем 24 часа;
  2. Доступные цены (оптом и в розницу);
  3. Графа скидок (постоянным клиентам);
  4. Профессиональный штат сотрудников (консультация «От» и «До» готового изделия);
  5. Дилерские цены при обмене.

Девиз компании

Клиент доволен – значит все получилось.

Наша цель – полное и своевременное обеспечение потребностей клиентов. Точнее от клиента до предприятия.

Доставка и оплата по всей России

  1. Оплата (оплатить можно по наличному и безналичному расчету);
  2. Банковская карта;
  3. Безналичный расчет: а) выставление счета; б) оплата по счету; в) формирование заказа на складе; г) осуществление доставки до транспортной компании, либо курьером по Москве до Заказчика

Курьерская доставка:

а) Прием заказа;

б) Вызов курьера;

в) Загрузка на складе;

г) При получении заказа оплата курьеру наличными;

5) Самовывоз (Оплата в офисе)

Доставка Транспортными Компаниями.

1) ПЭК (Первая Экспедиционная Компания)

2) Деловые Линии

3) Доставка до терминала (250руб.)

Расходы Транспортной Компании.

ПЭК или Деловые Линии – Заказчик оплачивает самостоятельно при получении заказа на терминале своего города.

Номер на Сайте: