Кузов из алюминия

Изготовление кузовов автомобилей

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА СВАРНЫХ КОНСТРУКЦИЙ

Кузова легковых и кабины грузовых автомобилей выпускают в условиях крупносерийного производства. Поэтому к требованиям минимальной массы и необходимой жесткости кузова как к конструкции транспортного типа добавляются требования высокой точности заготовок и технологичности сварных соединений и узлов. Кузова автомобилей собирают из заготовок, штампованных из тонкого листа, и сваривают контактной точечной сваркой.

Автоматические линии сборки-сварки основных узлов кузова (пола, боковин и крыши) представляют собой сложный комплекс многоточечных сварочных машин и средств механизации, работающих в едином цикле. Многоточечные машины этих линий подразделяются на несколько типов.

Машины типа «открытый стол» (рис. 106, а) входят в состав многих автоматических линий. В машинах этого типа свариваемые узлы устанавливаются на неподвижный стол 1, а сварочные пистолеты и клещи закреплены на откидывающихся кронштейнах 2, которые подводятся к свариваемым узлам с помощью гидравлических цилиндров 4. Для съема узлов со стола и подачи их на конвейер линии машины оснащены гидравлическим подъемником 3. Они имеют телескопические цилиндры, так как высота подъема деталей достигает 1,3 м.

6) Г 5 і}

Рис. 106. Схема характерных точечных машин: а — «открытый стол»; б — подвижный нижний стол

Машины с подвижным нижним столом используют для сварки крупногабаритных узлов (рис. 106, б). Свариваемые узлы укладываются на подвижный стол 2 машины, сварочные пистолеты закреплены неподвижно на верхней плите 1. Подъем и фиксация стола осуществляются с помощью гидроцилиндров 3 и пневмоцилиндра 5, который управляет движением коленчатых рычагов 4. При подъеме стола рычаги устанавливаются в «мертвое» положение и воспринимают усилия, как от веса стола, так и от давления электродов сварочных пистолетов. Пневмоцилиндр 5 служит как для вывода рычагов из «мертвого» положения, так и для амортизации стола при опускании.

В начале автоматической линии входящие в состав собираемого узла детали обычно ориентируют и укладывают по фиксаторам вручную. Сохранение первоначальной ориентации и требуемая точность фиксации узла на последующих сборочно-сварочных позициях обеспечиваются соответствующим конструктивным оформлением транспортирующих устройств. В некоторых случаях для этого используют тележки-спутники.

Примером автоматической линии с тележками-спутниками может

служить линия сборки и сварки пастила пола кабины грузового автомобиля

ЗИЛ, обеспечивающая сборку и сварку одного изделия за 55 с (рис. 107).

Работа линии осуществляется следующим образом: Два оператора

укладывают детали каркаса на приемное устройство многопозиционного

пресса рельефной сварки 9. Сваренный каркас выдается шаговым

устройством и с помощью механической руки 10 перекладывается на

очередную тележку-спутник 8, когда она находится на платформе

гидроподъемника 3 в нижнем положении. Другие два оператора снимают

панель пола с подвесного конвейера, укладывают ее па приемное устройство

многопозиционного клепального станка 1 и вставляют в отверстия панели 32

резьбовые втулки. Панель с втулками подается в станок, где за один рабочий

ход все резьбовые втулки развальцовываются. Затем панель пола шаговым

устройством выдастся из станка, захватывается механической рукой 2 и

укладывается в то же приспособление-спутник, где ранее был установлен каркас пола.

Рис. 107. Схема автоматической линии сборки и сварки настила пола кабины грузового автомобиля ЗИЛ

Укладка панели пола механической рукой 2 осуществляется в тот момент, когда тележка-спутник находится на платформе подъемника 3 в верхнем положении. На следующей позиции 4 на этот спутник механической рукой 11 подается подставка сиденья, которая контактной сварочной установкой прихватывается в двух точках. Затем полностью собранный узел вместе с приспособлением-спутником перемещается шаговым конвейером и последовательно проходит операции сварки на пяти контактных многоэлектродных машинах 5, где сваривается в 204 точках, и попадает на платформу гидроприемника 6, находящуюся в верхнем положении. Здесь сваренный пол кабины снимается с приспособления механической рукой 7 и передается на линию сборки кабины.

Многие другие автоматические линии изготовления узлов кузовов

автомобилей работают без тележек-спутников. Так, на рис. 108 схематически

показаны линии сборки и сварки боковых стенок кузова автомобиля ВАЗ, где

в начале линии оператор укладывает элементы каркаса и обшивку на стол многоточечной машины типа «открытый стол» по фиксаторам. Выполненные на этой машине сварные точки обеспечивают жесткость собранного узла и надежную фиксацию деталей относительно друг друга. После сварки гидроподъемник поднимает узел до уровня расположения транспортирующего устройства, которое захватывает его и передает на следующие позиции, где сварка остальных точек выполняется автоматически. В конце линии сваренные боковины поступают на механизмы перегрузки 1, где они из горизонтального положения переводятся в вертикальное и подаются на напольный конвейер 2. Рядом расположены накопители 3 для хранения готовых боковин. Подача с напольного конвейера в накопители и обратно происходит автоматически.

Рис. 108. Схема автоматической линии сборки сварки боковых стенок автомобиля ВАЗ

Общую сборку и сварку кузова автомобиля из готовых узлов осуществляют либо на одном рабочем месте в главном кондукторе, либо на нескольких рабочих местах методом последовательного укрупнения. На ВАЗе используют первый прием, причем перед подачей готовых узлов в главный кондуктор, их комплектуют в одной подвеске толкающего подвесного конвейера. Для этого сваренные боковины кузова (правая и левая) подаются к месту комплектации 4 напольным конвейером. С противоположной стороны к этому месту поступает и крыша кузова.

Комплектация осуществляется с помощью опускной секции линии подвесного конвейера. Навеску осуществляют опусканием участка несущего пути подвесного конвейера 2 (рис. 109) вместе с подвеской 1 так, чтобы крюки 5 рычагов 3 оказались на уровне проемов окон боковин, подаваемых напольным конвейером. Крыша подается центрально и подхватывается крюками 4. Скомпонованная таким образом «виноградная гроздь» поднимается вверх, захватывается выступом тяговой цепи толкающего конвейера и автоматически адресуется к месту приема последнего узла компоновки — настила пола, располагаемого в подвеске на опорах 6, а затем отправляется на склад.

Рис. 109. Опускная секция с подвеской для комплектации узлов кузова и подачи к главному конвейеру

Со склада «виноградные грозди» системой автоматического адресования подаются к главному сборочному кондуктору (рис. 110) челночного типа, включающего в себя многоточечную сварочную машину 4, шесть подвесных сварочных машин 3 и две связанные между собой кондукторные тележки 1 и 5. Подвеску опускной секции 2 с компоновкой узлов кузова опускают на приемную тележку, узлы снимают, устанавливают
в кондуктор тележки, и фиксируют прижимами. Затем тележку подают в многоточечную машину 4. Здесь узлы окончательно фиксируются зажимными устройствами и свариваются снизу в 96 точках. Остальные 182 точки сваривают с помощью подвесных сварочных машин. В это время вторая тележка оказывается на позиции, где ранее собранный кузов захватывается рычагами подвески, опускная секция 2 толкающего конвейера 6 поднимает его, и подвеска с кузовом отправляется на линию окончательной сварки.

Рис. 110. Схема расположения главного кондуктора для сборки кузова автомобиля ВАЗ

Примером другого приема общей сборки — методом последовательного наращивания — является участок сборки и сварки кабин грузового автомобиля ЗИЛ. Поскольку линия сварки кабин имеет четыре контактных многоэлектродных машины и работает автоматически, обеспечение требуемой точности подачи свариваемых кромок под электроды машины на каждой позиции достигается использованием самоустанавливающихся сварочных пистолетов (рис. 111). Корпус 2 сварочного пистолета может поворачиваться вокруг оси 1, что позволяет подводить ограничительную планку 4 до упора в свариваемые кромки, если их отклонения от проектного положения не выходят за пределы сжатия пружины 3.

Рис. 111. Сварочный пистолет плавающего типа

Работа на линии сварки кабин осуществляется следующим образом. Собранная на прихватках кабина поступает на первую сварочную машину (рис. 112), где фиксируется в рабочем положении с помощью подъемного устройства 7. Сварочные пистолеты 4, закрепленные на траверсах 1, 6 и 8 шарнирами 2 с пружинами 3, подводятся к. свариваемым кромкам до упоров 5. После выполнения сварочной операции кабина опускается на шаговый конвейер и передается на следующую позицию.

Рис. 112. Схема сварки кабины на многоэлектродной

машине

Автоматические линии, оснащенные многоточечными контактными машинами, предназначены для выпуска кузовов автомобилей определенной марки. Переход на изготовление кузовов другой модификации требует замены оборудования.

Поэтому для прихватки и сварки кузовов автомашин все шире используют роботы, оснащенные клещами для контактной точечной сварки. Использование роботов делает производство более гибким, т. е. позволяет переходить к изготовлению кузовов другой модификации путем простой смены программы роботов, обслуживающих отдельные рабочие места.

Общее устройство кузова автомобиля. Применяемые материалы

Несущий кузов, характерный для большинства легковых автомобилей, содержит полые элементы, изготовленные из листовой стали, на которых устанавливаются и крепятся сваркой кузовные панели. В зависимости от типа автомобиля, около 5000 сварных точек должны быть выполнены вдоль сварочных фланцев общей длиной 120…200 м. Ширина сварочного фланца составляет 10-18 мм. Другие части (передние крылья, двери, капот, крышка багажника) крепятся к опорным конструкциям кузова на болтах или с помощью точечной сварки. Существуют также каркасные и скелетные типы конструкций кузовов.

В качестве материала для кузовов применяется тонколистовая сталь. Наиболее преобладающая толщина 0,75…1 мм, однако, отдельные части кузова могут иметь толщину от 0,6 до 3,0 мм.

Для изготовления высоконапряженных конструктивных элементов применяется высокопрочная низколегированная листовая сталь. Некоторые детали кузова, например, бампера, молдинги, люки, спойлеры, решетки радиаторов, облицовки надколесных ниш, колпаки и др. могут изготавливаться из пластмасс.

Общая конструкция кузова легкового автомобиля показана на рисунке.

Рис. Кузов легкового автомобиля:
1 – подоконная балка; 2 – передняя балка крыши; 3 – лонжерон крыши; 4 – задняя балка крыши; 5 – задняя стойка кузова; 6 – задняя панель; 7 – пол в задней части кузова; 8 – задний лонжерон; 9 – средняя стойка кузова; 10 – поперечина под задним сиденьем; 11 – передняя стойка; 12 – поперечина под сиденьем водителя; 13 – порог; 14 – надколесная ниша; 15 – поперечная балка опор двигателя; 16 – передний лонжерон; 17 – поперечина передняя; 18 — поперечина радиатора

Для защиты кузова от коррозии при изготовлении кузова применяются следующие меры:

  • снижение до минимума фланцевых соединений, острых кромок и углов
  • устранение зон, где могут скапливаться пыль и влага
  • выполнение отверстий для предварительной антикоррозионной обработки и обработки методом электрофореза
  • обеспечение доступности к элементам кузова для ввода ингибиторов коррозии
  • обеспечение вентиляции полых элементов
  • предотвращение проникновения пыли и влаги в скрытые полости
  • выполнение дренажных отверстий
  • снижение до минимума зон, подвергаю­щихся воздействию ударов камней
  • покрытие нижней части кузова и тех частей кузова, которые в наибольшей степени подвержены коррозии (двери и силовые элементы в передней части автомобиля) специальными защитными средствами

Для снижения массы кузова, при сохранении его прочности, в современных автомобилях применяют высокопрочную сталь, доля которой в верхней и нижней частях кузова составляет 50…60%. Применение высокопрочной листовой стали позволяет снизить массу применяемых деталей кузова на 25%.

Стальной листовой материал современных автомобилей подвергается электролитиче­скому или термическому цинкованию. Соединение отдельных деталей кузова производится с помощью лазерной сварки, обеспечивающей абсолютно гладкие швы.

Фланцы, подверженные активному коррозион­ному воздействию, обрабатываются специальными пастами (поливинилхлорид или эпоксидная смола) в зоне расположения точечных швов.

Перспективным направлением в развитии автомобильных кузовов является применение алюминия и в 2005 году масса алюминиевых деталей на один автомобиль в Европе составляет 130 кг. Среди новых материалов, активно завоевывающих автомобилестроение, следует назвать пеноалюминий – чрезвычайно легкий, жесткий, с высоким энергопоглощением при столкновении. Металлические пенистые структуры обладают и высокими характеристиками, обеспечивающими шумоизоляцию и термостойкость, однако стоимость деталей из такого материала выше, чем у стальных, примерно на 20%.

Разработан новый материал «AAS» трехслойной структуры, способной кардинально изменить конструкцию кузова и снизить его массу до 50%.

В конструкции концептуальных автомобилей компаний «Ауди» и «Даймлер-Бенц» использованы каркасы из прессованных алюминиевых профилей. Масса кузова модели «Ауди А8» за счет этого снижена до 810 кг.

Структура передней части современных легковых автомобилей разработана таким образом, чтобы в случае легкого ДТП (скорость до 15 км/ч) необходимо было менять только поперечину бампера 5 и прикрепленные к ней поглотители энергии деформации 1. Если повреждения структуры автомобиля более значительны, тогда может возникнуть необходимость замены лонжеронов, для этого также следует отвернуть болтовое соединение. Все значительные повреждения в передней части автомобиля могут быть устранены только сваркой соответствующих оригинальных деталей.

Рис. Нижняя часть легкового автомобиля Audi:
1 – поглотитель энергии; 2 – лонжерон 1; 3 – лонжерон 2; 4 – болтовое соединение; 5 – поперечина бампера

Большой интерес представляет новый пластиковый материал под маркой «Fibropur». В его структуре – полиуретан и натуральные волокна (лен и сизаль в равных пропорциях). Детали из такого пластика отличаются легкостью, жесткостью, ударной вязкостью и меньшей стоимостью в сравнении с полиуретаном.

Замены металлических узлов и деталей на пластиковые позволили уменьшить стоимость их производства. В результате уже на нынешнем этапе создаются условия для снижения себестоимости автомобиля на 20 … 30%.

В настоящее время 48% всех пластмассовых деталей в легковом автомобиле приходятся на долю внутренней отделки кузова. Однако пластмассы применяются и в других агрегатах автомобилей – например, самоклеящиеся листовые материалы для повышения жесткости и прочности кузова из тонких стальных листов, оконные стекла из поликарбоната, которые на 40% легче, всасывающие патрубки из полиамида на двигателях.

В последнее время производители транспортных средств все большее внимание обращают на химические способы соединения узлов и деталей автомобиля. Так, компания «Крайслер» разрабатывает концептуальный автомобиль (CCV) с кузовом из термопластов, соединенный с рамой специальным клеем.

Стекла кузовов легковых автомобилей выполняют многослойными с высокой теплоотражающей способностью. Такие стекла эффективно защищают от теплового воздействия извне, причем теплоотражающая способность никак не сказывается на их прозрачности. Они уменьшают интенсивность ультрафиолетовых лучей и обладают шумоизолирующими свойствами. Для этого в многослойной структуре стекла предусмотрены защитная и отражающая прослойки. Многослойная конструкция травмобезопасна, потому что между слоями стекла находится защитная пленка, предотвращающая образование осколков.

Производители автомобилей большое внимание уделяют травмобезопасным конструкциям кузова, которые описаны в разделе «Системы пассивной безопасности».