Какие гидрокомпенсаторы лучше

Гидрокомпенсаторы. Что это такое и почему они стучат

Современные автомобили становятся более совершенными и умными. Это касается и газораспределительного механизма. Очень важно чтобы клапан всегда открывался и закрывался в нужный момент, чтобы в идеале, не было зазоров между распределительным валом и самим клапаном. Это дает много преимуществ, например увеличение мощности и уменьшение расхода топлива. Раньше клапана регулировались вручную, потом появились механические «широкие» толкатели (которые, кстати, используются и по сей день на многих авто), но вершиной эволюции стали гидравлические компенсаторы или попросту «гидрокомпенсаторы». Они имеют много положительных моментов, но и отрицательных хватает, в частности они могут стучать. Сегодня я постараюсь простым и понятным языком рассказать об устройстве, а также о некоторых поломках, будет и видео версия в конце …

Для начала определение:

Гидрокомпенсаторы – это устройства использующие давление масла для автоматической регулировки зазоров между клапанами и распределительными валами (или валом). Таким образом, улучшая динамические характеристики, уменьшая расход топлива. Стоит отметить, что улучшается и акустический комфорт, банально двигатель работает тише.

НО до появления гидрокомпенсаторов, на автомобили устанавливались механические регуляторы клапанов …

Немного истории

Гидравлические компенсаторы пришли на смену менее эффективным механическим регуляторам газораспределительных механизмов. Как правило, обычный клапан двигателя, скажем на классическом двигателе ВАЗ 2105 — 2107, не имеет гидрокомпенсатора поэтому его часто приходилось регулировать, в среднем через 10 000 километров. Регулировка клапана на, ВАЗ 2105 – 2107, производилась вручную, то есть приходилось снимать клапанную крышку и выставлять зазоры, при помощи специального щупа, которые различались по толщине, а значит вы могли подобрать для вашего пробега.

Если регулировку не производить, то двигатель автомобиля, начинал шуметь, динамические характеристики снижались, а расход топлива возрастал. Через 40 – 50000 километров, клапана вообще следовало менять. То есть механическая регулировка клапана, «мягко» скажем — изжила себя, нужно было, что-то делать, так сказать усовершенствовать конструкцию.

Так на двигателях переднеприводных ВАЗ, начали устанавливать механические толкатели перед клапаном. Если утрировать, то на клапан сверху просто одевалась большая «шляпка», у нее большой диаметр (чем у старой конструкции), а поэтому износ намного уменьшился, ведь износить больший диаметр гораздо сложнее, чем малый. Но регулировка все равно осталась, конечно не каждые 10 000 километров, намного реже, но ее все равно рекомендуется делать. Обычно это происходило путем подкладывания ремонтных «шайб», увеличенной высоты. Стоит отметить, что «такие» механические регулировки достаточно эффективны и используются некоторыми производителями до сих пор, регулировка шайбами рекомендуется не ранее 40 – 50 000 километров (если говорить о наших ВАЗ) на некоторых иномарках толкатели ходят еще дольше. Большими плюсами является простота конструкции, неприхотливость (можно лить полусинтетические масла), а также относительная дешевизна конструкции. Минусами можно отметить то, что при выработке «шайб» сверху двигатель начинал работать шумнее, падали динамические характеристики и увеличивался расход. Нужна была конструкция, которая автоматически регулировала зазор.

И вот на смену механической регулировке клапана, пришла совершенно новая технология. Тут все просто — теперь вам не нужно регулировать клапана вручную, за вас все сделают гидрокомпенсаторы. Они сами выставят нужный зазор клапана двигателя, благодаря чему увеличивается ресурс двигателя, увеличивается мощность, снижается расход топлива, да и механизм ходит довольно долго 120 – 150 000 километров (при должном обслуживании). В общем, шаг вперед.

Какие бывают типы гидрокомпенсаторов

Эти устройства широко применяются именно в системах ГРМ. Однако их аналоги применяются и в натяжениях цепей, так называемый «натяжитель цепи ГРМ». На данный промежуток времени применяются всего 4 конструкции.

  • Гидротолкатель. Часто применяется на современных авто для регулировки зазора между клапаном и распределительным валом
  • Гидроопора
  • Гидроопора для установки в рычаги и коромысла. В основном применялись на старых механизмах ГРМ
  • Роликовый гидротолкатель

Все 4 типа имеют места быть на различных конструкциях, хотя «гидроопоры» часто применялись раньше в двигателях. Сейчас все больше производителей уходят к «гидротолкателям». С типами немного понятно, теперь подробнее как они работают.

Принцип работы гидрокомпенсатора

Для начала я хочу разобрать составляющие гидротолкателя:

  1. Кулачек распредвала
  2. Проточка в теле гидрокомпенсатора
  3. Втулка плунжера
  4. Плунжер
  5. Пружина клапана плунжера
  6. Пружина ГРМ
  7. Зазор между гидрокомпенсатором и кулачком распределительного вала
  8. Шарик (клапан)
  9. Масляный канал в теле гидрокомпенсатора
  10. Масленный канал в головке блока цилиндров
  11. Пружина плунжера
  12. Клапан ГРМ

Гидрокомпенсатор это как бы промежуточное звено между клапаном и распределительным валом газораспределительного механизма. Когда кулачек вала (1) не давит на гидравлический компенсатор то клапан (12) находится в закрытом состоянии, по воздействием пружины (6).

Пружина плунжера (11) давит на плунжерную пару (3 и 4) за счет этого корпус гидрокомпенсатора перемещается к валу, пока не упрется в него, тем самым деля зазор минимальным.

Давление внутри плунжера производится при помощи давления масла, от двигателя оно движется по каналу (10) и затем в канал самого компенсатора (9). Далее через канавку (2) заходит внутрь, где отгибает клапан (8) и проходит создавая давление.

Затем кулачок распределительного вала идет вниз, создавая давление на гидравлический компенсатор. Масло которое зашло внутрь плужерной пары создает давление на клапан (8) фактически запаковывая его. Как мы с вами знаем, масло практически не сжимается, поэтому после запирания компенсатор выступает как жесткий элемент, который давит на клапан ГРМ, открывая его.

Стоит отметить что это высокоэффективное устройство, масло из плунжерной пары немного выдавливается прежде чем шарикообразный клапан (8) его запрет внутри. Таким образом, может образоваться небольшой зазор, который уберется при следующей накачки масла через каналы (9 и 10) и гидрокомпенсатор станет опять жестким.

Таким образом, не смотря на температуру двигателя, тепловое расширение, всегда будет устанавливаться максимально возможный зазор. Этот механизм не нужно регулировать весь срок службы, даже не смотря на выработку, ведь он всегда эффективно «поджат» к распределительному валу.

Плюсы и минусы гидравлического компенсатора

Положительных сторон у такого механизма много:

  • Он полностью не обслуживаемый, работает автоматически
  • Увеличенный ресурс системы ГРМ
  • Максимальный прижим, что дает хорошую тягу
  • Минимальный расход топлива
  • Двигатель работает всегда тихо

Что же не смотря на всю передовую конструкцию, есть и достаточно большое количество минусов.

  • Так как вся работа строится на давлении масла, нужно заливать только качественные смазки. Желательна синтетика
  • Нужно чаще менять масло
  • Конструкция более сложная
  • Дорогостоящий ремонт
  • Со временем могут забиваться, что ухудшает работу двигателя (расход и тяга), а также ГРМ начинает шуметь

Самые большие минусы, это то что конструкция дорогая и сложная, и ОЧЕНЬ сильно требовательна к качеству масла. Если лить «не пойми что» очень быстро выйдут из строя и потребуют замены. Например, обычные механические толкатели, намного проще и менее требовательны к качеству смазки.

Почему гидрокомпенсаторы стучат

Для начала хочется отметить если компенсаторы стучат, это говорит о не правильной их работе, скорее всего они вышли из строя, либо что-то не так со смазкой двигателя.

Собственно основная причина кроется в качестве и уровне масла, хотя есть куча механических неисправностей.

  • Недостаточно масла. Такое тоже бывает, оно не эффективно закачивается в каналы и поэтому не закачивается внутрь плунжерной пары, то есть не создается нужного давления внутри
  • Забиты каналы в головке блока или самом гидрокомпенсаторе. Происходит это из-за несвоевременной замены масла, оно пригорает и на стенках образуются нагары, которые закупоривают каналы, масло не может эффективно проходить в компенсатор.
  • Вышла из строя плунжерная пара, зачастую ее просто клинит
  • Вышел из строя шариковый клапан плунжера
  • Нагар на корпусе плунжера снаружи. Он физически не дает ему подниматься и компенсировать зазоры

Конечно бывает стучат из-за того что в системе есть нагар, тогда нужно просто их снять и промыть, работоспособность может восстановится. НО при больших пробегах, они разбиваются (проявляется выработка), требуют замены.

Я еще раз хочу повторить — нужно понимать, что работа гидрокомпенсатора зависит от качества масла и его своевременной замены. Нужно лить только качественную синтетику и мой вам совет – меняйте смазку немного чаще положенного срока, например положено через 15 000 км, меняйте через 10 – 12 000 км. Прослужат дольше.

Сейчас небольшое подробное видео, смотрим.

НА этом заканчиваю, искренне ваш АВТОБЛОГГЕР.

Гидрокомпенсаторы достаточно давно заняли твердую позицию среди основных деталей в двигателе современного автомобиля. В конце прошлого века, автоинженеры стремились к разработке технологичных и экономичных моторов автомобилей, обладающих хорошими тяговыми характеристиками на средних оборотах. И гидрокомпенсаторы при технологичных инженерных изысканиях того времени пришлись очень кстати. Принцип работы гидрокомпенсаторов достаточно прост — при помощи плунжерной пары, пружины и давления масла регулируется зазор между профилем распределительного вала и клапаном ГРМ. Соответственно, находясь между клапаном и распредвалом, гидрокомпенсатор меняет свою высоту и воздействует на степень открытия/закрытия клапана в зависимости от условий работы мотора.

Исторический экскурс

Гидрокомпенсаторы, они же — гидротолкатели или в простонародье «гидрики» появились достаточно давно. Разберем, зачем нужны компенсаторы и как они появились в моторах многих автомобилей.

Их появлением в конструкции газораспределительных механизмов автомобилей, водители во многом обязаны японским автоинженерам, так как именно они стали массово применять «гидрики» в конструкции системы ГРМ моторов. В то время, при проектировке ДВС, большое внимание уделялось не только его основным узлам (коленчатый вал, поршни, шатуны), но и деталям газораспределительного механизма. Инженеры постепенно «доводили» прежние поколения своих силовых агрегатов до совершенства. Так, на смену привычным механическим толкателям и пришли гидротолкатели.

Читайте также: Зачем и как часто нужно менять ремень ГРМ?

Конструкция механических толкателей, распространенная в то время, постепенно начала выходить из обихода. Обусловлено это следующими моментами:
— стандартный механический толкатель требует постоянного внимания и регулировки;
— механизм ГРМ с механическими толкателями производит больше шума, по сравнению с гидротолкателями.

Пришедшие на смену стандартным толкателям гидрокомпенсаторы, намного лучше подошли для использования в двигателях утилитарных автомобилей. Как известно, при повседневной эксплуатации машины в типовых задачах, «рабочие» обороты редко превышают отметку в 3500 оборотов на тахометре. Поэтому для подобных режимов работы (и даже вплоть до 5000), использование «гидриков» в механизме ГРМ полностью оправдывает себя ввиду тихой работы
и отсутствия необходимости в обслуживании.

Однако не всё так гладко: про «крутибельность» силового агрегата на оборотах выше 6000 лучше позабыть. Гидроопоры попросту не успевают справляться со своей основной задачей при работе на высоких оборотах, из-за чего они быстро выходят из строя и начинают стучать.

Как работают гидрокомпенсаторы

Устройство гидрокомпенсатора (гидроопоры) представляет собой металлическую конструкцию цилиндрической формы. С внешней стороны компенсаторы не имеют каких-либо характерных элементов (за исключением компенсаторов роликового типа).

Весь механизм данной детали как раз кроется внутри: там находится подпружиненный плунжер и его клапан (шарик), отдельная пружина этого узла (плунжерной пары), а для работоспособности компенсатора в нем присутствует специальный канал, по которому подводится масло из ГБЦ. Также во внутренней части имеется специальная компенсационная емкость, где скапливается масло в момент нажатия кулачком распредвала на компенсатор. Данная компенсационная емкость выступает в роли своеобразного накопителя и работает как демпфер.

В ситуациях, когда кулачок распредительного вала не давит на гидрокомпенсатор, соприкосновение компенсатора с распредвалом осуществляется за счёт работы пружины и плунжерной пары. Демпфер наполнен маслом, но этого количества недостаточно для работы плунжерной пары. Масляный канал в компенсаторе закрыт, а давление внутри не превышает такую отметку, чтобы произошло давление на клапан ГРМ.

Внешняя же часть компенсатора соприкасается с профилем (кулачком) распределительного вала и постоянно перемещается, таким образом определяется момент и время на которое клапан будет открыт. В момент работы, кулачок распредвала давит на тело компенсатора, тем самым преодолевая усилие от пружины и плунжерной пары, и, открывая масляный канал, необходимый для работы плунжерной пары. Таким образом, при надавливании кулачка распредвала на компенсатор, происходит поступление масла в компенсатор, повышение давления в нём и его работа — открытие клапана ГРМ в нужный момент. Плунжерная пара же выступает регулятором и сразу же после прохождения кулачком вала определенной точки — начинает «стравливать» лишнее масло обратно в систему. В итоге за счёт работы плунжерной пары, разницы давления и теплового расширения металлов, обеспечивается подбор необходимого зазора и прижим компенсатора к распределительному валу.

Разновидности гидрокомпенсаторов

По принципу работы все типы компенсаторов одинаковы, но по конструкции они различаются. Самые распространенные в данный момент — гидротолкатели с плоским внешним подпятником под кулачок распредвала. Чуть менее распространенные — роликовые толкатели, встречаются они в основном на силовых агрегатов японского производства.

К более архаичным вариантам можно отнести гидроопоры в разном исполнении:
— под стандартное верхнеклапанное исполнение;
— под установку в рычаги/коромысла.

Неисправности

Нередко водители современных автомобилей, оснащенных моторами с гидротолкателями, сталкиваются с проблемами стучащих компенсаторов. Обычно подобные неисправности появляются на пробегах свыше 40 000км или больше. Почему стучат гидрокомпенсаторы? Причин для появления злополучного цокота может быть много, разберем их по порядку.

  1. Использование низкокачественного масла. и/или несвоевременная замена ГСМ.

При заливке в мотор дешевых и некачественных масел, детали гидрокомпенсаторы подвергаются преждевременному износу: засоряются масляные каналы и клапан компенсатора (шарик), из-за чего компенсатор не полностью закрывается. Кроме того, при низкокачественном масле и неправильной работе плунжерной пары, часто происходят утечки масла и неправильный выбор зазора.

  1. Несвоевременная замена ГСМ.

Редкая смена моторного масла также является одной из причин стука компенсаторов. Масло потерявшее свои рабочие свойства склонно к пригоранию и закоксовыванию, из-за чего отложения на стенках каналов мешают нормальному проходу и оттоку масла от компенсаторов.

  1. Недостаточное количество масла в системе.

Автовладельцам не стоит забывать, что необходимо постоянно следить за уровнем масла в двигателе посредством щупа, причем делать это рекомендуется при каждом открытии капота, благо эта процедура по времени не занимает больше двух минут. Поэтому при появлении цокота из под клапанной крышки в первую очередь следует проверить уровень масла.

Разные модели силовых агрегатов имеют свои типичные «болячки», одна из таковых — утечки масла. И если подобные конструктивные недостатки в современных моделях двигателей можно встретить крайне редко, то проблемы с расходниками встречаются гораздо чаще.
Использование неоригинальных или некачественных сальников и прокладок способно спровоцировать течи масла и понижение общего давления масла. Поэтому не стоит удивляться, если при «запотевшей» крышке ГБЦ или при подтеках на блоке цилиндров, начнут стучать компенсаторы.
Кроме текущих сальников и прокладок проблемным местом также может быть неисправный масляный фильтр, из-за которого падает давление в системе и масло плохо поступает в колодцы для компенсаторов.

  1. Поломки компенсаторов.

Выход из строя компенсаторов на иностранных автомобилях — явление не частое, но при эксплуатации в условиях стран РФ и СНГ всё-таки случается. Основных причин здесь две:
— некачественные ГСМ (поддельное или дешевое масло, низкооктановый бензин со вредными присадками и т.д);
— дешевый (ненадежный) производитель самих компенсаторов.

Использование низкокачественных ГСМ ведет к тому, что элементы гидротолкателей со временем попросту выходят из строя:
— заклинивает плунжерная пара;
— выходит из строя пружина плунжера.

  1. Естественный износ.

При большом пробеге гидротолкателей (свыше 60 000 — 70 000 км) внутренние части компенсатора изнашиваются, в следствие чего появляются утечки масла из внутренней полости детали. Также на таких пробегах не редки случаи с подклиниванием плунжерной пары из-за чего часто возникает паразитный цокот.

Преимущества и недостатки

Конструкция механизма газораспределения с применением гидротолкателей имеет свои неоспоримые преимущества, такие как:
— длительный ресурс работы;
— отсутствие необходимости в обслуживании;
— тишина при работе (по сравнению с толкателями).

Недостатки гидрокомпенсаторов:
— высокая стоимость деталей (по сравнению с классическими толкателями);
— сложная конструкция и как следствие — меньшая надежность;
— требуют использования качественного масла.

О холодном пуске замолвите слово

Многие автовладельцы часто жалуются на то, что во время запуска двигателя машины в зимний период возникает характерный цокот гидрокомпенсаторов. Возникновение этого паразитного стука при запуске мотора «на холодную» — распространенная ситуация, обусловленная следующими моментами:
— использование масла повышенной вязкости;
— запуск двигателя без предварительного подогрева (в теплом гараже, либо за счёт предпускового подогревателя);
— запуск машины при отрицательных температурах (ниже -10-15 градусов).

Использование масла с высокой вязкостью при отрицательных температурах ведет к тому, что коленчатому валу, намного сложнее проворачивать мотор. Вторичный вал и привод дополнительных агрегатов страдают этой же проблемой, поэтому вязкое масло при запуске двигателя достаточно долго разжижается и доходит до компенсаторов.

Стоит помнить, что запуск мотора при отрицательных температурах всегда сложнее, поэтому рекомендуется устанавливать предпусковые подогреватели или парковать автомобиль в отапливаемых гаражах.

В случае, если парковать автомобиль в теплом гараже нет возможности, то следует использовать предпусковые обогреватели двигателей и заливать масло с низкой степенью вязкости. Также не лишним будет потратить чуть больше времени на прогрев мотора, а после начала движения — избегать сильных нагрузок до тех пор, пока ДВС не выйдет на свою «рабочую» температуру.

Что лучше — толкатели или гидрокомпенсаторы

Автомобильные двигатели далеки от совершенства, несмотря на их развитие уже на протяжении нескольких десятилетий. Одной из проблем, с которой до сих пор борются инженеры при проектировании моторов, является тепловой зазор, образуемый между клапаном двигателя и кулачком распределительного вала. В идеальном двигателе данный зазор должен полностью отсутствовать, что позволит ему работать с максимальным КПД.

Но из-за расширения металлов при нагреве полностью избавиться от данного зазора нельзя. Если прижать клапан двигателя к кулачку максимально, то в процессе работы двигателя металлы расширятся из-за нагрева, соответственно, это приводит к их контакту друг с другом и заклиниванию. Поэтому между поверхностями создается зазор, который довольно большой на холодном двигателе, но сводится практически к минимуму при горячем моторе из-за расширения металлов.

Рассмотренная выше ситуация актуальна, когда на автомобиле установлен толкатель. Для решения проблемы инженерами был изготовлен гидрокомпенсатор. В рамках данной статьи рассмотрим, что лучше – толкатель или гидрокомпенсатор.

Оглавление: 1. Зачем прижимать максимально клапан к кулачку 2. Плюсы и минусы толкателей 3. Плюсы и минусы гидрокомпенсаторов

Зачем прижимать максимально клапан к кулачку

Автомобильный двигатель — достаточно сложная конструкция, которая имеет массу нюансов. Тепловой зазор между кулачком распределительного вала и толкателем как раз и является одним из таких нюансов. Если он значительный (а речь в данном случае идет о десятых долях миллиметра), это уже может вести к понижению КПД двигателя.

При большом зазоре снижается скорость наполнения цилиндра рабочей топливовоздушной смеси. Соответственно, это ведет к снижению мощности двигателя и менее качественному отводу продуктов отработки. Чтобы повысить мощность двигателя водителю приходится больше давить на педаль газа, из-за чего значительно увеличивается расход топлива.

Если в двигателе используется толкатель, при нагреве такого мотора, то есть в процессе стандартной работы, металлы расширяются сводя тепловой зазор к минимуму, тогда как на холодном двигателе он максимален. Соответственно, мотор работает “на холодную” менее эффективно, чем после прогрева.

Обратите внимание: Производители автомобилей, которые выпускают двигатели с толкателями, устанавливают конкретные рамки, в которых необходимо регулировать клапан, чтобы зазор минимально понижал КПД двигателя.

Плюсы и минусы толкателей

Рассмотрим преимущества и недостатки такого механизма как толкатели. Они представляют собой круглые цельнометаллические или разборные элементы. В разборном варианте у толкателей имеются шайбы сверху.

Обратите внимание: Старые варианты толкателей имеют конструкции с коромыслами.

Цель толкателя — снизить износ верхней точки штока клапана и кулачка распределительного вала. Достигается данная цель крайне просто, путем увеличения диаметра, поскольку шток чаще всего имеет диаметр до 8 мм, а диаметр толкателя от 25 до 40 мм. Получается, что износ в разы меньше. Регулировка на автомобилях с толкателями должна выполняться не реже, чем 1 раз в 120 тысяч километров пробега.

Конструкция толкателя крайне простая, отсюда вытекают плюсы подобных компонентов:

  • Редко требуется производить регулировка — раз в 100-120 тысяч километров пробега;
  • У моделей с регулировочными шайбами не требуется выполнять замену самого толкателя, достаточно установить шайбу требуемой высоты;
  • Простота, как самого толкателя, так и головки блока под него. Соответственно, меньше вероятность поломки устройства;
  • Низкая стоимость. Из-за простой конструкции стоимость толкателя невелика, в сравнении с гидрокомпенсаторами;
  • Работа толкателей не сильно зависит от качества масла;
  • Способны работать даже в двигателях, которые давно не чистились, то есть имеющих элементы с нагаром.

Само собой, есть у толкателей и отрицательные стороны:

  • Регулировка теплового зазора должна производиться в ручном режиме. Если пренебрегать данной задачей, зазор будет увеличиваться или уменьшаться, что скажется на работе мотора;
  • Если не регулировать толкатели, они начнут сильно стучать при работе двигателя;
  • Регулировка толкателя выполняется достаточно сложно, поскольку требует снятия клапанной крышки. Соответственно, обращаться за выполнением подобной задачи придется в сервисный центр.

Как можно видеть, простота толкателей играет подобным устройствам, как в плюс, так и в минус.

Плюсы и минусы гидрокомпенсаторов

В современных двигателях гидрокомпенсаторы сильно похожи на толкатели, но в них имеется одно важное отличие — автоматически регулируемая центральная часть. В зависимости от текущих условий работы двигателя, она выдвигается или сжимается. Соответственно, такие устройства позволяют избежать необходимости частой регулировки клапанов, поскольку конструктивная особенность гидрокомпенсаторов позволяет всегда держать прижатым кулачок распределительного вала к гидравлическому толкателю.

Рассмотрим плюс гидрокомпенсаторов перед толкателями:

  • Удается свести к минимуму тепловой зазор, соответственно, КПД максимальный, поскольку клапан двигателя максимально плотно прижат к кулачку распредвала;
  • Если рассматривать продолжительное использование двигателя с гидрокомпенсаторами и сравнивать с аналогичным мотором, в котором используются толкатели, можно сделать вывод, что у первого варианта эффективнее расходуется топливо;
  • Корректировка гидрокомпенсаторов выполняется в автоматическом режиме. То есть водителю не придется самостоятельно снимать клапанную крышку или обращаться в сервисный центр;
  • Практически бесшумная (на фоне остальных компонентов двигателя) работа.

Есть у гидрокомпенсаторов и минусы:

  • Сама конструкция гидрокомпенсатора (и головки блока) значительно сложнее, чем конструкция толкателя;
  • Из более сложной конструкции вытекает и второй минус — более высокая стоимость. Если сравнивать по цене толкатель и гидрокомпенсатор, то толкатель окажется в несколько раз дешевле. При этом нужно помнить, что также дороже и головка блока, а кроме того требуется более качественный (и дорогой) масляный насос;
  • Гидрокомпенсаторы привередливы к качеству используемого масла. Для их грамотной работы замену масла нужно выполнять как можно чаще (не реже, чем каждые 10 тысяч километров пробега);
  • При поломке гидрокомпенсатора речи о ремонте не идет, потребуется замена;
  • При выходе гидрокомпенсатора из строя он начинает сильно шуметь.

Гидрокомпенсаторы, которые не имели дефекта при производстве, обычно работают на протяжении всего срока жизни мотора. Но это только в том случае, если использовать нормальное топливо, своевременно менять масло и не допускать образования нагара.

mark2grande71 ›
Blog ›
Устройство и принцип работы гидрокомпенсатора

Размеры деталей работающего двигателя внутреннего сгорания вследствие нагрева увеличиваются. Чтобы это не привело к поломкам, ускоренному износу, ухудшению характеристик силовых агрегатов, между некоторыми деталями на этапе конструирования создают тепловые зазоры. При разогреве мотора за счет расширения деталей они «выбираются» (поглощаются). Тем не менее по мере износа деталей их нагрева оказывается недостаточно для поглощения зазоров, что отрицательно сказывается на характеристиках двигателя.
Размеры деталей работающего двигателя внутреннего сгорания вследствие нагрева увеличиваются. — само по себе ничего страшного не привносит. Но, поскольку двигатель состоит из деталей, сделанных из разных материалов (чугун, сталь, аллюминий), у которых разные коэффициенты теплового расширения, то увеличиваются они в разной степени. Эту проблему отчасти и решают гидрокомпенсаторы.
Тепловой зазор в механизме привода клапанов напрямую влияет на работоспособность силового агрегата. Так как из-за износа деталей клапанные зазоры постоянно изменяются, еще в начале прошлого века в двигатель внедрили механизм их регулирования с помощью обычных гаечных ключей. Делать это следовало регулярно, а значит, повышалась трудоемкость техобслуживания и увеличивалась его стоимость. Гидрокомпенсаторы (ГК) позволяют избежать этих проблем. Они должны полностью поглощать зазоры между рабочими поверхностями распредвала и рокерами коромыслами, клапанами, штангами — независимо от температурного режима и степени износа деталей. Зазор в клапанном механизме может как увеличиваться так и уменьшаться в зависимости от конструкции ГРМ и применяемых материалов.
Гидрокомпенсаторы можно устанавливать на все типы газораспределительных механизмов (ГРМ) — с коромыслами, рычагами, штангами — и при любом расположении распредвала (верхнем или нижнем). В зависимости от конструкции ГРМ различают четыре базовых типа гидрокомпенсаторов: гидротолкатели; гидроопоры; гидроопоры, предназначенные для установки в рычаги или коромысла; роликовые гидротолкатели.
Гидрокомпенсатор в толкателе с верхним распредвалом работает следующим образом:
Кулачок распредвала, повернутый к толкателю тыльной стороной, не передает на него усилие, и плунжерная пружина свободно выдвигает плунжер из втулки, выбирая тем самым необходимый зазор. Образовавшаяся полость под плунжером, через шариковый клапан вбирает в себя масло. После того как масло заполнит полость, срабатывает шариковый клапан, который под действием своей пружины, закрывая появившуюся полость.
Поворачиваясь выпуклым профилем к толкателю, кулачок нажимает на него и перемещает его вниз. В течении этого воздействия гидравлический толкатель передает усилие на клапан как «жесткий» узел, так как обратный клапан закрыт, и масло в замкнутой полости не сжимается. Во время нижнего перемещение толкателя и плунжерной пары, небольшая часть масла выдавливается через зазоры из полости под плунжером. Длина гидрокомпенсатора незначительно уменьшается и образуется тепловой зазор между кулачком и толкателем. Ушедшее масло вновь восстанавливается из системы смазки двигателя.
Тепловое расширение деталей клапанного механизма приводит к изменению объема «восстанавливающей» порции масла и длину гидрокомпенсатора, то есть он автоматически восстанавливает зазор, как от теплового расширения материала, так и от естественного износа деталей газораспределительного механизма.
Гидравлические толкатели работают надежно лишь при применении масла высокого качества, сохраняющего при изменении температуры примерно постоянную вязкость.

Расположение гидрокомпенсаторов в коромысле, в толкателе с нижним распредвалом и в опоре рычага привода клапана ГРМ
Где: 1 — кулачок; 2 — плунжер; 3 — втулка плунжера; 4 — полость под плунжером; 5 — плунжерная пружина; 6 — пружина обратного клапана; 7 — фиксирующее кольцо; 8 — рычаг привода клапана; 9 — сливное отверстие.

Конструкция
Устройство и принцип работы гидрокомпенсатора рассмотрим на примере гидротолкателя, установленного в головке блока цилиндров. Остальные типы гидрокомпенсаторов хотя и отличаются по конструкции, но работают по тому же принципу. Гидротолкатель представляет собой корпус, внутри которого установлена подвижная плунжерная пара с шариковым клапаном. Корпус подвижен относительно направляющего седла, сделанного в головке блока цилиндров. Если ГК вмонтирован в рычаги привода клапанов (в рокеры или коромысла), его подвижной частью является только плунжер, выступающая часть которого выполнена в виде шаровой опоры или опорного башмака.
Основная часть ГК — плунжерная пара. Зазор между втулкой и плунжером составляет всего 5-8 мкм, что обеспечивает высокую герметичность соединения, при этом подвижность деталей сохраняется. В нижней части плунжера сделано отверстие для поступления масла, которое закрывается подпружиненным обратным шариковым клапаном. Между втулкой и плунжером установлена достаточно жесткая возвратная пружина.
Принцип действия
Когда кулачок распредвала расположен тыльной стороной к корпусу толкателя, внешней сжимающей нагрузки нет и между корпусом и кулачком холодного двигателя имеется зазор. Возвратная пружина выталкивает плунжер до тех пор, пока этот зазор не будет «выбран» — уменьшен практически до нуля. Одновременно масло из системы смазки двигателя через шариковый клапан и перепускной канал поступает во внутреннюю полость плунжера и заполняет ее.
По мере того, как вал поворачивается, кулачок начинает давить на корпус толкателя и перемещает его вниз, перекрывая масляные каналы — системы смазки двигателя и перепускной канал. Шариковый клапан при этом закрывается, и давление масла под плунжером увеличивается. Так как жидкость несжимаема, плунжерная пара начинает работать как жесткая опора, передавая усилие кулачка на шток клапана двигателя.
Хотя зазор в плунжерной паре очень мал, немного масла все же продавливается обратно через технологический зазор между плунжером и втулкой, поэтому толкатель опускается («проседает») на 10-50 мкм. Величина «просадки» зависит от оборотов вращения коленвала двигателя. Если они увеличиваются, за счет уменьшения времени нажатия на корпус гидротолкателя снижаются утечки масла из-под плунжера.
Образование зазора при сходе кулачка с толкателя исключается благодаря действию возвратной пружины плунжера и давлению масла в системе смазки двигателя. Таким образом, гидрокомпенсатор обеспечивает отсутствие зазоров — за счет постоянной жесткой связи между элементами ГРМ. Из-за нагревания двигателя длина деталей самого гидрокомпенсатора несколько меняется, но он автоматически компенсирует и эти изменения.
Плюсы и минусы
Внедрение ГК позволило избежать регулировки зазоров клапанного механизма и сделать его работу более «мягкой»; уменьшить ударные нагрузки, то есть снизить износ деталей ГРМ и исключить повышенную шумность двигателя; более точно соблюдать длительность фаз газораспределения, что положительно сказывается на сохранности двигателя, его мощности и расходе топлива.
При всех своих преимуществах гидрокомпенсаторы обладают и недостатками, а двигатели, оборудованные ими, — некоторыми особенностями эксплуатации. Один из конструкционных недостатков простых гидрокомпенсаторов проявляется в некачественной работе холодного двигателя в первые секунды пуска, когда давление масла в системе смазки отсутствует или оно минимально.
Основные причины выхода из строя гидрокомпенсатора (ГК) — загрязнение масляных каналов двигателя и износ рабочих поверхностей обратного клапана и плунжерной пары, изготовленных с высокой степенью точности. К загрязнению приводит использование несоответствующего масла, несоблюдение сроков его замены или неисправность масляного фильтра, пропускающего грязное масло через перепускной клапан.
При увеличении посадочного зазора в плунжерной паре повышается утечка масла из камеры высокого давления. Гидрокомпенсатор теряет «жесткость», поэтому эффективность передачи усилия кулачка на стержень клапана ГРМ снижается. То же самое происходит при износе обратного клапана камеры высокого давления. Неисправности системы смазки двигателя замедляют наполнение ГК маслом и не позволяют поглощать зазоры в ГРМ.
Внутренний объем ГК должен быть заполнен маслом. Пустой или частично заполненный («завоздушенный») гидрокомпенсатор не выполняет своего основного назначения — устранения зазоров в деталях ГРМ. В результате возникают ударные нагрузки, которые проявляются характерным стуком. Это приводит к ускоренному износу деталей ГРМ и ухудшению работы мотора. Поломкам способствует и попадание в ГК с маслом частиц изношенных деталей: узел может заклинить. В зависимости от того, в каком положении это произошло, в ГРМ либо появятся большие зазоры, либо клапаны окажутся «зажатыми» (возрастает нагрузка на распредвал, падает мощность и т.д.).

Чтобы избежать этого, необходимо:
* контролировать и поддерживать внутреннюю чистоту двигателя — проводить смену масла и масляного фильтра в сроки, рекомендованные автопроизводителем, с понижающим коэффициентом 0,6 — 0,9, учитывающим условия эксплуатации машины;
* промывать двигатель перед очередной сменой масла, используя медленно действующие промывки «на пробег». При загрязнении внутренних поверхностей двигателя (что обнаруживается, например, при снятии кожуха ГРМ) быстродействующие средства промывки применять не рекомендуется, так как отслоившиеся куски грязи с потоком масла могут попасть во внутренние полости компенсаторов и вывести их из строя.
Необходимо знать, что малые зазоры между подвижными элементами гидрокомпенсатора обуславливают применение в двигателе маловязких масел высокого качества — синтетических или полусинтетических (SAE 0W40, 5W40, 10W30 и др.). Использовать минеральные масла (например, SAE 15W40) из-за их повышенной вязкости и склонности к смолистым отложениям не рекомендуется.

Диагностика и замена
При выходе из строя одного или нескольких ГК появляется стук, похожий на клапанный. Этот звук хорошо распространяется в металле, поэтому для определения неисправного гидрокомпенсатора применяют фонендоскоп. Аналог этого прибора можно изготовить и самостоятельно из стального стержня длиной около 700 мм и диаметром 5-6 мм. На один торец стержня крепится жестяная банка из-под пива с обрезанным верхом, а на его середину — деревянная ручка. Приложив ухо к банке и поочередно приставляя свободный торец «фонендоскопа» к головке блока в зоне каждого компенсатора, на слух определяют неисправный по усиленному стуку. «Подозрительный» ГК следует демонтировать и проверить.
Извлечь ГК из седла можно с помощью магнита. Если это не удается (ГК «прикипел» или заклинил), его извлекают съемником, предварительно приварив к нему тягу с крюком. Некоторые гидрокомпенсаторы поддаются разборке, что позволяет определить степень износа внутренних деталей. Разборку следует производить с особой аккуратностью, чтобы не повредить поверхности сопряженных элементов.
Гидроопоры разбираются после снятия стопорного кольца; внутренние детали гидротолкателя «вытряхивают», аккуратно постукивая его корпусом о металлическую поверхность. Загрязненный компенсатор промывают в ацетоне или в другом растворителе.
Визуальный осмотр позволяет обнаружить внешние повреждения торцевой поверхности гидрокомпенсатора, подвергающейся нагрузкам (выбоины, царапины или задиры). В процессе эксплуатации на ней может образоваться даже углубление.
Существует еще один простой и действенный способ контроля состояния демонтированного ГК: после заполнения маслом он не должен сжиматься при прикладывании усилия рук. В противном случае он неисправен и подлежит замене. Работоспособный ГК, сжатый в струбцине, оказывает значительное сопротивление и незначительно уменьшает длину только через 20-30 сек.
Секреты установки
Для нормального функционирования ГРМ с гидрокомпенсаторами (после их замены) следует соблюдать определенные правила:
* новые ГК на заводе-изготовителе заполняются консервирующим масляным составом, который при установке удалять не нужно. После запуска мотора этот состав без каких-либо последствий смешивается с маслом из системы смазки двигателя;
* не следует устанавливать в ГРМ пустые гидрокомпенсаторы, «завоздушенность» которых образовалась вследствие разборки и промывки. Сначала их нужно заполнить маслом. Несоблюдение этого правила может привести к появлению значительных ударных нагрузок, особенно при первом пуске двигателя (пока «прокачается» система смазки);
* после установки ГК на двигатель рекомендуется 5-7 раз провернуть коленвал за храповик ключом и перед первым пуском мотора выждать 10-15 мин. Это необходимо для того, чтобы под давлением кулачков распредвала плунжерные пары нагруженных компенсаторов заняли рабочее положение;
* при ремонте и замене ГК нужно промыть масляную систему, заменить масляный фильтр, залить в двигатель свежее масло. Вращая коленвал, можно визуально проверить поступление масла через масляные каналы к установочным седлам (при извлеченных гидрокомпенсаторах);
* в ходе ремонта двигателя автомобиля с пробегом свыше 150-200 тыс. км гидрокомпенсаторы зазоров клапанов желательно заменить (при таком пробеге, как правило, они выходят из строя). Использование некачественных масел и несоблюдение сроков их замены может вдвое уменьшить срок службы ГК;
* при наличии одного или нескольких неисправных гидрокомпенсаторов менять желательно весь комплект, иначе скоро придется повторно вскрывать ГРМ для ремонта.
Прокачка гидрокомпенсаторов
При определенных условиях эксплуатации автомобиля (длительные перерывы в работе, износ плунжерных пар ГК) может произойти частичное вытекание масла из гидрокомпенсаторов (завоздушивание). Это проявляется стуками в приводе ГРМ прогретого двигателя.
Удалить воздух из компенсаторов можно следующим образом: сначала следует дать двигателю поработать 2-3 мин. при постоянных оборотах (2-2,5 тыс. об/мин), затем при переменных (2-3 тыс. об/мин), а после этого 30-50 сек на холостых. Шумы в ГРМ должны исчезнуть, но если они сохраняются, весь цикл повторяется, иногда — несколько раз. Если это не поможет, следует искать неисправные ГК и причину их выхода из строя.